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ABSTRACT 
 

CONTRIBUTION OF RURAL LAND USE TO FLORISTIC DIVERSITY: A MULTI-
SCALE STUDY OF ORGANIC FARMS AND SUBDIVISIONS IN THE SOUTHERN 

APPALACHIANS 
 (May 2010) 

 
Stephanie Laura Smith, B.S., Appalachian State University 

 
M.A., Appalachian State University 

 
Chairperson: Gabrielle L. Katz 

 
In the rural countryside of the Southern Appalachians, a trend of land-use change 

from agriculture to exurban development continues to alter the landscape at multiple 

spatial scales. This research seeks to answer how such land-use trends alter species 

richness, habitat structure and landscape patterns of the Southern Appalachians.  By 

combining GIS analysis with field data collection, this study specifically addresses the 

following questions: (1) What are the overall patterns of habitat composition and spatial 

structure of the landscapes surrounding farms and subdivisions? (2) What are the patterns 

of habitat composition and spatial structure of agricultural and subdivided sites? (3) How 

do farms and low-density residential development maintain or differ from the broader 

landscape in habitat composition and spatial structure. (4) How do farms and low-density 

residential development compare in terms of floristic biodiversity?   

Using ArcGIS® and six-inch resolution aerial photography, I mapped and 

classified various habitat patches (forest, field, shrub, riparian, built and crop) within 

eight study sites (four farms and four subdivisions) and documented plant species 
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composition, cover, and structure in two 100m2 plots within each habitat patch at all sites.  

I compared total cover of all plant species and relative cover of native and exotic species, 

as well as various measures of species richness (total, native, and exotic), between 

habitats and land use types.  

Forested habitats dominated both landscape types, accounting for approximately 

62 percent of the total landscape surrounding both farms and subdivisions.  Results from 

this study revealed that as land-use changes from agriculture to exurban development, 

habitats become more fragmented and complex.  I found an overall decrease in total 

species richness, lower total native species richness, and higher exotic species within 

forested habitats.  Subdivisions also displayed a higher amount of habitat fragmentation 

than farms.  Further, farm sites maintained an overall closer relationship to the 

surrounding landscape than subdivisions in area weighted mean patch fractal dimension 

and edge density as well as habitat composition.  These results show the immense 

capability of rural land use such as organic agriculture and low-density residential 

development to influence a wide array of habitats by affecting patch structure, total 

species richness, and native and exotic species richness.  Further, they also display a 

potential to affect broader biodiversity involving species assemblages of a wide variety of 

animal species, microorganisms, and invertebrates. 

As population pressures continue to rise and natural areas experience greater 

ecological pressure due to human involvement, a tremendous need exists to understand 

how specific human activities may alter natural habitats.  Such knowledge can inform 
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land management strategies including land conservation (e.g. land trusts) and sustainable 

development practices that may mitigate harmful environmental effects. 
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Chapter 1 

INTRODUCTION  
 
 

Across the United States, many rural areas are experiencing land-use conversions 

from agriculture to low-density exurban housing developments (Bock and Bock 2009).  

This increase in human alteration of landscapes creates questions as to the ecological 

ramifications of such land-use practices, both during and after conversion from one land 

use type to another (Hansen et al. 2005).  While many studies establish the effects of 

agriculture on biotic diversity, few examine how exurban development affects ecological 

communities and species assemblages, especially effects resulting from land-use change 

(Hansen et al. 2005).  This chapter will examine the role of rural human-dominated 

agricultural and exurban development systems in influencing biotic diversity.  I will 

review the current body of literature that examines the rural landscape and its potential to 

contribute to biological diversity, the role of specific agricultural practices and exurban 

developments in maintaining and/or altering biodiversity and the current state of land-use 

change in the Southern Appalachian region. 

 

Rural Land Use and Biodiversity 

Biodiversity refers to the total of life (plants, animals, fungi and microorganisms) 

on Earth including phenotypic and genetic variation within each classification group 

(Dirzo and Raven 2003).  This includes wild as well as domesticated species used in
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agricultural cultivation and ornamental gardens (Dirzo and Raven 2003).  Biodiversity is 

essential for all species by providing fundamental needs for survival.  For human 

populations, biodiversity provides a vast array of goods and services, from shelter to food 

and clothing to recreation (McNeely and Scherr 2003).  Apart from the direct benefits of 

biodiversity to humans, ecosystem function also relies on the diversity of species for 

nutrient cycling, pollination, regeneration, purification, decomposition, rejuvenation and 

stabilization (Altieri 1999).  However, continued debates question the extent to which 

ecosystems depend on biodiversity and individual species to maintain balance, especially 

at multiple spatial scales (Srivastava and Velland 2005; Tilman 2000).  

In rural landscapes, local livelihoods often depend directly on the goods and 

services that biotic diversity provides, making research on the effects of rural land uses 

necessary for both conservation and community sustainability.  For example, in 

agricultural systems, the intricate web of biodiversity is essential for maintaining 

productivity within the entire cropping system.  A diversified matrix of wild plant and 

animal species directly affects the reproductive success of agricultural crops by 

influencing seed dispersal, pest management and soil nutrients (McNeely and Scherr 

2003).  Further, the diversity of habitats also contributes to rural economies.  Many rural 

industries depend on the natural resources, aesthetic/recreational values and natural 

amenities of the countryside (Hansen et al. 2005). This presents a tremendous quandary 

as to how to support the needs of a growing population while sustaining ecosystem 

function.   

Land transformations cause the destruction and fragmentation of habitats 

worldwide, making them the leading cause of biodiversity loss and species extinctions 
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today (Lindenmayer and Fischer 2006; Olff and Ritchie 2002; Pimm and Raven 2000; 

Vitousek et al. 1997).  The principal driving force behind fragmentation is the 

consumptive exploitation of ecological goods and services for food, clothing, shelter, raw 

materials and intrinsic values (Altieri 1999).  Within rural exurban developments, the 

increased desire of many homeowners for amenities of forest areas such as increased 

privacy and recreational activities can create a habitat structure of small fragmented 

forest patches intervened by patches of built/disturbed habitats (Bock and Bock 2009; 

Brown et al. 2008; USDA 2007; Hansen et al. 2005).  Thus increasing the overall amount 

of fragmentation around such types of land uses. 

In recent years, researchers have begun to describe the extent of human induced 

habitat transformations in an attempt to characterize landscapes for conservation and land 

management purposes.  Many studies focus on the land use/cover trends of various 

ecosystems and biomes around the world, documenting the rates of change through time 

and estimating the degree of human influence on the environment (Sanderson et al. 2002; 

Lambin et al. 2001).  In a study conducted on the global human footprint, Sanderson et al. 

(2002) mapped and discussed the extent of human impact.  Using patterns of human 

environmental involvement and ecological impact, they estimated human population 

density, land transformation and infrastructure to create a human influence index.  They 

concluded that the majority of land use activities exist in a moderate to extreme state of 

environmental influence, and that increased suburban/urban development and agricultural 

activities contributed the greatest amount of impact (Sanderson et al. 2002).  Similarly, 

Foley et al. (2005) discussed how activities such as agriculture and development changed 
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the landscape to a remarkable degree with an estimated global loss of forest cover 

between 7 to 11  million km2 over the past 300 years.  

While few question that urbanized landscapes contribute to environmental 

degradation and habitat fragmentation (Pickett et al. 2008; McKinney 2002), many fail to 

recognize the role that rural land uses play in this equation.  In actuality, land uses such 

as agriculture and low-density housing development (i.e., subdivisions and exurban 

development) may alter landscapes to considerable degrees and at unprecedented spatial 

scales (Pickett et al. 2008; Luck 2007; Hansen et al. 2005; Lambin et al. 2001; Paoletti 

1999; Knight, Wallace, and Riebsame 1994).  These alterations have direct impacts on 

biotic diversity, soil structures, hydrologic systems and atmospheric circulations (Alberti 

et al. 2003; Foley et al. 2005; Lambin et al. 2001).  For example, anthropogenic land use 

practices such as industry and agriculture directly contributed 35 percent of carbon 

dioxide emissions to global concentrations since 1850 (Foley et al. 2005).  Population 

strains on sensitive ecosystems such as coastal wetlands and tropical rainforests continue 

to threaten endemic species (Lindenmayer and Fischer 2006), while agricultural 

expansion threatens ecosystems worldwide (McNeely and Sherr 2003).  However, the 

extent of alteration depends greatly on the type of rural land use employed and the degree 

of interaction (i.e., land clearing, forestry, grazing, hunting, fishing, trampling and 

cropping intensification) with the environment (Mayfield and Daily 2005; Sanderson et 

al. 2002; Vitousek et al. 1997).  For example, in large-scale highly intensive agricultural 

settings, land use practices increased the amount of land transformation, water pollution 

and soil erosion (Foley et al. 2005).  In contrast, alternative less intensive practices, such 
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as small-scale productions, displayed less impact to surrounding areas and often 

increased rates of biodiversity (McNeely and Sherr 2003). 

Countryside biogeography attempts to document and understand rural and human-

dominated landscape effects on biotic diversity, species assemblages and environmental 

conservation (Daily 1997).  In light of increased human population growth and its threat 

to species diversity (especially native species), Daily (1999) argued that rural 

countrysides display great potential for biodiversity conservation.  According to Daily 

(1999), as populations continue to grow, the majority of undisturbed natural habitats and 

remnant native areas will reside within rural landscapes.  Understanding the degree to 

which these areas support biodiversity is fundamental in protecting future species and 

ecosystem services (Daily 1999).   

The study of countryside habitats is relatively new, and a comprehensive 

understanding of the potential conservation power of rural landscapes is currently being 

developed (Daily, Ehrlich, and Sánchez-Azofeifa 2001).  However, studies of animal and 

insect populations in tropical habitats of Central and South America and temperate 

regions of Europe display the potential of fragmented countryside landscapes to influence 

biodiversity (Daily, Ehrlich, and Sánchez-Azofeifa 2001; Horner-Devine et al. 2003).  

For example, Daily, Ehrlich, and Sánchez-Azofeifa (2001) found a substantial number of 

native bird species among intermediate-intensity agricultural landscapes in southern 

Costa Rica, with the majority of species found in large forest fragments.  Horner-Devine 

et al. (2003) further found that small forest patches in the tropical countryside of Costa 

Rica contributed to increased butterfly species richness.  Similarly, in a study of bird 

species in the lowland countryside of Britain, Hinsley et al. (1995) established that small 
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habitat patches may contain diverse avian populations. While these studies demonstrate 

the capacity of countryside habitats to support biotic diversity, some warn that these 

trends may not be sustainable in long-term scenarios or with intensification of land use 

practices (Daily, Ehrlich, and Sánchez-Azofeifa 2001).  Further, spatial scale (i.e., local 

regional and global), habitat configuration and structure such as the size of habitats 

greatly contribute to the amount of conservation value of rural habitats (Hinsley et al. 

1995). 

Least studied within countryside biogeography is the diversity of flora within 

rural systems and the contributions of gardens and residential housing developments to 

biodiversity (Mayfield and Daily 2005; Daily, Ehrlich, and Sánchez-Azofeifa 2001).  

However, in a study of the herbaceous and shrubby plants in forested and deforested 

successional habitats, including cattle pastures, in the southern countryside of Costa Rica, 

Mayfield and Daily (2005) found significant evidence that countryside habitats can 

support native species assemblages.  Of the 772 herbaceous and shrubby plant species 

surveyed, they found that deforested habitats supported 37 to 42 percent of all species 

(Mayfield and Daily 2005).  Further, they found higher plant densities in deforested 

habitats than forested, likely due to environmental differences between open canopy 

deforested habitats and closed canopy tropical forests (Mayfield and Daily 2005).  In 

additional study of the same sites, Mayfield et al. (2005) provided evidence that 

deforested and forested habitats differed in their ecological assembly processes among 

growth and fruit type traits, which subsequently influenced overall community function 

and species assemblages. This underscores the importance of studying and understanding 

the diversity patterns in different countryside habitats because each proves to have 
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differing trait relationships among species and functional diversity patterns (Mayfield et 

al. 2005).  

Historically, research on land-use change primarily focused on changes between 

natural ecosystems and human dominated systems such as agriculture and development 

(Mayfield, Ackerly, and Daily 2006; Maestas, Knight, and Gilgert 2003).  Valued for 

their insight on the environmental changes to natural areas resulting from such land use 

practices and the potential conservation value of individual habitats within the human 

dominated systems, these studies hold high importance to ecology and conservation.  

However, understanding each land use type individually is not enough to fully grasp the 

scope of human environment interaction.  As population pressures and industry push for 

space, a need exists to also understand the effects of land-use change between human 

dominated land use types.   

 

Agriculture and Biodiversity 

Agricultural biodiversity consists of all elements and levels of diversity among 

crops and both natural and semi-natural habitats within and surrounding the cropped 

areas.  This includes the diversity among agricultural crops and livestock, wild plant and 

animal species, as well as the variety of pollinators, pests and predators (Thompson et al. 

2007).  As a dominant rural land use, agriculture displays great potential to influence 

biotic diversity at all levels.  A growing body of research documents the effects of 

agriculture on biodiversity through a range of subjects from agricultural mosaics 

(Bennett, Radford, and Haslem 2006), farm size (Belfrage, Biörklund, and Salomonsson 

2005), field boundary diversity (Harvey 2007; Cœur et al. 2002; McNeely and Scherr 
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2003), to habitat heterogeneity (Benton, Vickery, and Wilson 2003; Weibull, Östman, 

and Granqvist 2003).   

Benton, Vickery, and Wilson (2003) argued that maintenance of habitat 

heterogeneity could be the key to sustaining biodiversity in agriculture. Landscapes 

associated with higher levels of biodiversity generally coincide with mosaics of various 

habitat patches of cropped and natural/semi-natural non-cropped areas, creating a 

heterogeneous setting (Harvey 2007; Benton, Vickery, and Wilson 2003; Weibull, 

Östman, and Granqvist 2003).  According to Harvey (2007), these non-cropped 

intermediary areas of purposefully placed habitats such as hedgerows, windbreaks, live 

fences and boarder strips have immense capability to conserve biodiversity within the 

agricultural system.  These areas create essential habitats for a variety of taxa including 

butterflies, spiders, plants, and birds that collectively play important roles in maintaining 

biodiversity at larger landscape scales (Benton, Vickery, and Wilson 2003).   According 

to McNeely and Scherr (2003), these species use intermediary zones to move between 

differing patch types such as edge zones separating cropped and forested habitats, often 

increasing the amount of biotic diversity in the landscape overall. However, the degree of 

influence of habitat structure depends on the individual species present within the habitat 

and their specific needs for survival (Harvey 2007; NcNeely and Scherr 2003). 

The shape and size of individual habitats affects both animal and plant species by 

influencing mobility and distribution from one habitat patch to another (Harvey 2007; 

McNeely and Scherr 2003).  Often, larger vegetative patches tend to support a wider 

range of species than smaller habitats (Lafortezza and Brown 2004).  However, small 

patches of remnant vegetation could be of great significance to conservation of a variety 
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of organisms including plants (Angelstam and Pettersson 1997; Turner 1996), vertebrates 

(McCoy and  Mushinsky 1999) and birds (Fischer and Lindenmayer 2002).  Shape of 

vegetative patches also influences the spatial pattern and diversity of organisms 

(Lindenmayer and Fischer 2006; Lafortezza and Brown 2004).  

The effects of farming practices are complex and occur at multiple spatial scales.  

At the field scale, direct impacts such as tillage and chemical applications directly affect 

wide ranges of individual organisms.  At the landscape and regional scales, replacement 

of natural habitats with arable and grazing fields simplifies the landscape (Concepción, 

Díaz, and Baquero 2008; Benton, Vickery, and Wilson 2003).   Further, the degree of 

impact to biodiversity often depends on the type of agricultural practices employed by the 

individual farms.  For example, conventional agricultural practices involve high inputs of 

synthetic fertilizers, pesticides, herbicides and fungicides, which prove hazardous to 

natural vegetation, soil structure and water quality (Altieri 1999; Paoletti 1999). In 

addition, conventional farming methods often lead to intense monocultural cropping that 

limits the genetic diversity within crop fields and creates a trend of decreased farmland 

biodiversity and habitat heterogeneity (Benton, Vickery, and Wilson 2003).  According to 

Green et al. (2005), these intensive farming practices greatly reduce the capability of the 

land to support wild species and maintain natural habitats.   

In recent years, organic farming has received increased support and attention as 

an alternative to conventional agriculture.  Organic methods require that farmers use 

natural inputs that readily breakdown when introduced in the system and encourage 

diversified intercropping practices (Benton, Vickery, and Wilson 2003; Altieri 1999; 

Paoletti 1999).  In theory, these restrictions promote environmental sustainability and 
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provide increased habitat for a variety of organisms such as birds, butterflies, and plants 

(Benton, Vickery, and Wilson 2003).   

Most studies that compare biodiversity of conventional versus organic farms 

indicate organic agriculture supports higher levels of biodiversity (Belfrage, Biörklund, 

and Salomonsson 2005; Fuller et al. 2005; Hole et al. 2005; Asteraki et al. 2004; Benton, 

Vickery, and Wilson 2003; Weibull, Östman, and Granqvist 2003; Elsen 2000).  Hole et 

al. (2005) reviewed literature comparing the effects of organic and conventional farming 

practices on biodiversity, and found that sixty-six out of seventy-six studies reported 

higher species abundance and richness on organic farms than on conventional farms 

(Hole et al. 2005).   These positive effects occurred across a wide range of taxa including 

birds, mammals, butterflies, spiders, earthworms, beetles and plants (Hole et al. 2005).  

For example, Fuller et al. (2005) found that organic farms displayed higher measures of 

species diversity and abundance than conventional farms, especially for plant species.  

They reported organic farms had 68-105 percent more plant species, 74-153 percent more 

weedy plant species, 5-48 percent more spiders and 16-62 percent more birds than 

conventional farms (Fuller et al. 2005).  In a similar study, Boutin, Baril, and Martin 

(2008) found that out of sixteen conventional and fourteen organic farms in 

Peterborough, Ontario, organic farms not only showed higher plant species richness in 

arable fields and habitat boundaries, but also a greater degree of overall habitat 

variability.  Furthermore, they found that overall species composition varied between 

different farm types, with sixty-nine out of 193 species found exclusively on organic 

farms.   
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Studies of organic practices show that they are not exempt from negative impacts 

on biodiversity.  In a study conducted in the southwest region of England on the diversity 

patterns of organic versus conventional agriculture, Gibson et al. (2007) found that 

organic farms did not have higher rates of biodiversity in semi-natural boundary habitats 

than paired conventional farms.  They hypothesized that the spatial arrangement of the 

semi-natural habitats may play a key role in the rates of biodiversity at higher trophic 

levels (Gibson et al. 2007). Thus, landscape scale habitat diversity and habitat 

heterogeneity may provide a key to understanding the role of biodiversity on various 

landscapes (Benton, Vickery, and Wilson 2003).   

 

Exurban Development and Biodiversity 

 As a fast growing trend of development across the United States, exurbia greatly 

influences American life by affecting economic advancement, infrastructure (Nelson 

1992), as well as landscape ecological structure and function (Bock and Bock 2009; 

Hansen et al. 2005).  Defining exurban landscapes proves difficult since definitions 

encompass both physical location and socio-economic (i.e., income classes) attributes 

and have been debated since the first appearance of the term in Auguste C. Spectorsky’s  

1955 book, The Exurbanites (Nelson 1992; Spectorsky 1955).  However, exurban 

development generally consists of areas of low-density housing located beyond the urban 

or small town fringe (Bock and Bock 2009; USDA 2007; Hansen et al. 2005), including a 

rage of subdivision sizes from acreage tract to estates (Nelson 1992).  Normally these 

areas consist of larger land parcels nestled among natural/semi-natural habitats in rural 

settings (Bock and Bock 2009; Hansen et al. 2005), but within close commuting distance 
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to urban opportunities including employment, services, and social networks (Nelson 

1992).  The locations of such developments are far from indiscriminate and placement 

tends to coincide with scenic amenities such as streams, lakes, wetlands, national parks 

and forests (USDA 2007). 

In the American West, exurban developments continue to replace land once used 

for cattle ranching. In recent years, scholars have begun to document biotic response to 

such changes.  Results from these studies demonstrate the effect of exurban 

developments on biotic structures and landscape composition noting increased 

infrastructure, buildings, gardens, numbers of human-commensal avian, domesticated 

animals and exotic vegetation (Bock and Bock 2009; Huntsinger 2009; USDA 2007; 

Hansen et al. 2005; Maestas, Knight, and Gilgert 2003; Odell and Knight 2001).  

However, not all findings yield negative results.  In a series of studies on the 

exurbanizing landscape of Arizona, Bock, Jones, and Bock (2008; 2006; 2006a) found 

positive responses to avian populations, grasshopper densities, and forb cover as well as 

unchanged richness in native rodent populations with increased rates of development.  

Further, in a study of the correlations between butterfly populations and vegetation on 

exurban developments versus cattle ranches, Bock et al. (2007) found higher species 

richness of vegetation on exurban lands.  Many attribute such effects to differing past 

land use practices and housing densities (Bock and Bock 2009; Bock, Jones, and Bock 

2006a; Lenth, Knight, and Gilgert 2006) as well as active management practices of 

current homeowners (Yandik 2009; Hansen et al. 2005).  

Similar to patterns observed in diverse agricultural landscapes, fragmentation in 

exurban landscapes may produce positive effects to overall diversity.  According to Bock 
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and Bock (2009), the indirect effects of habitat fragmentation such as edge boundary 

interactions and homeowner land management practices may significantly contribute to 

biodiversity.  Rather, fragmentation may provide a heterogeneous setting for a diversity 

of vegetation, birds (Yandik 2009; Bock, Jones, and Bock 2008), small mammals (Bock, 

Jones, and Bock 2006), and insects (Bock, Jones, and Bock 2006a). For example, Yandik 

(2009) documented an increase in edge-adapted avian populations within residential 

developments, which he attributed to increased amount of edge density of various habitat 

patches.  

Despite the recent studies in the American Southwest, we lack a comprehensive 

understanding of exurban development effects on the landscape.  This results in 

speculation as to how the natural environment responds.  Often, authors hypothesize 

potential effects suggesting changes including increased habitat loss and number of 

exotic species (Huntsinger 2009; Maestas, Knight, and Gilgert 2003) as well as 

ecological alteration to adjacent natural habitats (Hansen et al. 2005).  However, a need 

exists for continued research into exurban development in order to understand the effects 

on biodiversity in multiple settings. 

 

Urban Ecology 

Given the shortage of studies that document rural residential development effects 

to biodiversity (Hansen et al. 2005), recent findings in urban ecology may provide 

valuable insights into the diversity patterns of human-dominated rural environments.  

According to Pickett et al. (2008), ecological explanations of urban ecosystems emerged 

in the middle of the 20th century to explain the spread of disease and spatial layout of 
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neighborhoods.  Recently, urban ecology has expanded to incorporate biological, 

physical and social components of the urban landscape to explain the biodiversity, social 

structure, nutrient cycling and spatial heterogeneity (Pickett et al. 2008).   

One key factor in urban ecology is the pattern of biodiversity changes across the 

rural to urban gradient (Maestas, Knight, and Gilgert 2003; McKinney 2002).  In a recent 

literature review McKinney (2002), examined the negative impact of urban and suburban 

developments on biodiversity and biotic responses to human alterations across the rural-

urban gradient, noting drastically reduced numbers of species with increased 

development throughout most studies.  As areas become more urbanized, the level of 

biological activity tends to decrease leaving fragmented patches of developed land, 

managed vegetation, ruderal vegetation and/or remnant natural habitat.  However, species 

response along the rural-urban gradient often varies among taxa (McKinney 2002) and 

with the scale of analysis (Pautasso 2007).  In some cases, authors noted increased 

species richness in urban areas compared to lower intensity land uses often associated 

with high numbers of exotic and synanthropic species (Kühn, Brandl, and Klotz 2004; 

McKinney 2002). 

In recent years, strong debates have continued on the impact of purposefully 

planted gardens and landscaping on species assemblages (Hansen et al. 2005; Yandik 

2009).  Some authors have argued that biodiversity has increased in urban/suburban 

developments due to purposeful plantings of many ornamental plant species (Smith et al. 

2006; McKinney 2002; Wuerthner 1994).  For example, recent comprehensive analyses 

of the biodiversity of gardens in Sheffield, UK, documented extremely high rates of 

floristic diversity in private urban gardens, which they attributed to active management 
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by garden owners (Smith et al. 2006; Thompson et al. 2003).  Though gardens supported 

an abundance of nonnative plants, they also contained noteworthy assemblages of native 

species uncommon to the surrounding rural landscapes (Smith et al. 2006) as well as 

lawn areas that closely resembled nearby semi-natural habitats (Thompson et al. 2003).  

Certainly, these findings challenge the conventional wisdom, which suggests the 

decline of biodiversity along the rural-urban gradient (McKinney 2002).  Based on this 

theory, we would infer that urban landscapes would have fewer species than rural lands.  

However, research on urban gardens reveal that not all developments adhere to the 

pattern of declining biodiversity along the gradient and demonstrate the potential for 

domestic urban gardens to exhibit high species richness (Smith et al. 2006; Thompson et 

al. 2003).  Application of these findings to the rural landscape yields contrasting 

hypotheses regarding the overall diversity patterns expected within rural subdivisions.  

On one hand, since subdivisions increase the rate of development, we would expect the 

diversity within residential developments to decline due to habitat loss and fragmentation.  

On the other hand, rural domesticated gardens might increase rural diversity through 

purposeful plantings, maintenance and care of some natural species.  

 

The Southern Appalachians and Land-Use Change 

Across the United States, the demand for the rural lifestyle is on the rise (Milder, 

Lassoie, and Bedford 2008; Hansen et al. 2005).  Population growth and increased 

demand for mountain land exemplify the current trend of exurban development (Hansen 

et al. 2005; Maestas, Knight, and Gilgert 2003).  In areas such as the Rocky Mountains, 

Pacific Northwest, and the southeastern United States, the patterns of rural exurban 
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development have had a long history dating back to the 1950s (Hansen et al. 2005).  In 

Southern Appalachia, this pattern has caused tremendous increases in land and housing 

values in both the urban areas and the rural landscapes (Wear and Bolstad 1998; SAMAB 

1996). The diverse climate and biological richness of the region attract a wide range of 

seasonal travelers and outdoor adventurers.   Such tourists, seasonal residents, and 

recreationists enjoy the scenic beauty of the many streams, lakes, national parks and 

forests throughout the region (SAMAB 1996).  The tourism industry within much of the 

region continues to grow (SAMAB 1996), amplifying the desire for accommodations for 

the growing number of people.  As noted by many, the combination of natural amenities 

and the rural lifestyle can make a region ideal for exurban development (Bock and Bock 

2009; Hansen et al. 2005).  According to Harden (2004), urbanization and development 

continue to thrive in the Southern Appalachian region and often replace land formerly 

used for agricultural purposes. Subsequent to such trends, the landscape structure is 

changing throughout the region including further habitat fragmentation and increased 

road network densities (Harden 2004). 

As the demand for rural land and mountain homes increases, many farmers across 

Southern Appalachia recognize the economic benefits of selling their land for 

development.  This pattern repeatedly prevails throughout the High Country region of 

western North Carolina. Simultaneously, a growing trend has emerged for organic 

agriculture throughout much of the region.  Some farmers realize the economic 

profitability of organic agriculture and have converted from conventional practices.  

Based on reports from the 2002 and 2007 agricultural census (USDA 2002; 2007a), this 

trend is expected to continue well into the future.  
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 Many have established that organic agriculture can support high levels of 

biodiversity (Belfrage, Biörklund, and Salomonsson  2005; Fuller et al. 2005; Hole et al. 

2005; Asteraki 2004; Benton, Vickery, and Wilson 2003; Weibull, Östman, and 

Granqvist 2003; Elsen 2000) and others speculate similar effects from exurban 

development (Bock and Bock 2009; Bock, Jones, and Bock 2008, 2006, 2006a).  It is 

important to understand how both types of land use practices influence diversity in the 

Southern Appalachians.   Further, since few have studied the impacts of land-use change 

from agriculture to low-density residential development, it is unclear how such trends are 

affecting biodiversity in this region.  It is the goal of this research to help fill this need 

and provide a foundation to understanding how land use and land-use change affect 

biodiversity in the Southern Appalachians. 

One way of understanding the influence of land use on the environment is through 

multi-scale analysis.  Such studies examine the ecological complexities from a variety of 

spatial (and often temporal) scales in attempts to better document and understand the full 

scope of ecological processes.  Multi-scale studies can incorporate large scale (regional to 

global range of study) and small-scale data (localized habitats to individual populations).  

As well as the intermediary range between large and small scales that incorporates 

surrounding landscapes and often matrixes of varying habitats (Lindenmayer and Fischer 

2006; Farina 2006).  Many argue that incorporating multi-scale analysis into ecological 

based studies improves the understanding of natural phenomena such as species habitat 

requirements, dispersal movements, community structure and function, and overall 

ecosystem and biome complexities (Lindenmayer and Fischer 2006; Farina 2006). 
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Often used in ecological studies to assess the spatial configuration of habitats and 

land cover within a variety of scales, geographic information systems (GIS) provides a 

birds-eye view of the landscape and helps identify potential patterns and habitat mosaics.  

Such analysis often includes the characterization of habitats through examination of 

aerial photography, satellite imagery, and various forms of land cover maps 

(Lindenmayer and Fischer 2006; Lafortezza and Brown 2004).  Further, spatial metrics 

and indexes generated in GIS help characterize the size, shape, and arrangement of 

landscape elements in attempts to document spatial configuration effects on ecological 

functionality and biological diversity (Lafortezza and Brown 2004; Olff and Ritchie 

2002). 

This research examines the role of organic farms and low-density residential 

subdivisions in maintaining biodiversity at multiple scales across the rural landscape.  

The overall research question asks how land-use change from agriculture to exurban 

development alters species richness, habitat structure and landscape patterns of the 

Southern Appalachians.  By combining GIS analysis with field data collection, this study 

specifically addresses the following questions: (1) What are the overall patterns of habitat 

composition and spatial structure of the landscapes surrounding farms and subdivisions? 

(2) What are the patterns of habitat composition and spatial structure of agricultural and 

subdivided sites? (3) How do farms and low-density residential developments maintain or 

differ from the broader landscape in habitat composition and spatial structure? (4) How 

do farms and low-density residential development compare in terms of floristic 

biodiversity?  
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Chapter 2 
 

METHODS 
 

  
Study Area 

 
  

I conducted this study in the mountains of North Carolina, which is part of the 

larger Southern Appalachian mountain range that spans from western Tennessee to 

Roanoke, Virginia and includes the mountain areas of Virginia, North Carolina and 

Georgia. The Southern Appalachians are an ancient mountain range dominated by 

varying topographic and climatic patterns making them rich in ecological diversity.  The 

topographic variance of the mountain range creates a myriad of habitats and 

microhabitats that support a wide variety of flora, fauna and microorganisms.  Dominated 

by deciduous forests and complex assemblages of understory herbaceous plant species, 

the region displays great ecological complexity (Turner et al. 2003). 

Aside from the natural beauty of the region, the area also displays a variety of 

land-use practices, including agriculture, residential development, recreation and 

industry.  While the topography and geologic features attract many to the region, the 

steep slopes and rocky soils limit the degree of interaction of many of these land uses.  In 

agriculture, these limitations constrain the establishment of many large-scale farming 

practices but do not completely limit agricultural activity (SAMAB 1996).  According to 

the Southern Appalachian Man in the Biosphere (1996), most agriculture consists on a 

relatively small scale with many individual farm owners.   
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For most of the northwestern region of North Carolina, the majority of farms 

range in size from ten to forty acres of harvested land (USDA 2007).  Within Ashe and 

Watauga counties in North Carolina, higher elevations (~500-1,800m) result in cooler 

climates and a shortened growing season, while the steep topography limits the 

availability of suitable agricultural land.  However, the elevation and topography also 

create diverse climatic variations that provide circumstances for a myriad of agricultural 

practices including livestock, vegetable and fruit cultivation, to nursery and ornamental 

plant cultivation (USDA 2002).    

I focused my study in northwestern North Carolina located within the Blue Ridge 

Mountain Range of the Southern Appalachian region.  The Blue Ridge ecoregion extends 

from the mountain regions of southwestern Virginia, through western North Carolina, to 

northwestern Georgia (Wear 1998) and is characterized by mountainous terrain, steep 

topography and rural nature (NC NHP 2008).   Specifically, I narrowed my study 

locations to Watauga and Ashe Counties in northwestern North Carolina due to recent 

trends of land-use change of increased exurban development as well as decreased 

agricultural activity.  Further, these counties also display a growing trend toward organic 

agriculture (USDA 2007) and display landscape characteristics similar to much of the 

western mountains of North Carolina (Table 2.1).  

 
Table 2.1 Terrain characteristics per county. 
 Elevation 

(meters) 
 Slope 

(degrees) 
County min max  min max 

Watauga 408 1,805 
 

0.00 82.66 

Ashe 653 1,588 
 

0.00 72.12 
Source: Elevation and slope data was generated 
from  Lidar elevation points within ArcGIS®.   
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Study Design 

 
 

In order to examine site (farm and subdivision) context in the surrounding 

landscape, I designed a multi-scale study including landscape, site and patch analysis.  At 

the landscape and site scale, I conducted a habitat patch analysis using ESRI ArcGIS® 

9.3 to analyze the overall structure and habitat matrix. To examine species composition, 

and richness, I conducted patch scale analysis through field-based data collection at each 

site and subdivision. 

I selected four pairs of organic farms and subdivisions within my study region.  

Because factors such as climate, topography, geographical positioning, history and 

natural environmental conditions play key roles in influencing ecological processes and 

species composition, it is important to consider these influences in any research 

addressing human environment interaction (Lindenmayer and Fischer 2006).  As such, I 

based my site selection not only on land use but also on the overall topographic 

characteristics of each study site. All sites selected for the study had been 

operational/built for a minimum of five years with three pairs located in Watauga County 

and two pairs in Ashe County (Figure 2.1).  Further, I paired organic farms and 

subdivisions according to similarity in size, topography, elevation and overall landscape 

characteristics (i.e., valley, ridge, and/or flood plain) to minimize differences in 

vegetative structure due to environmental conditions (Table 2.2).  
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Figure 2.1. Map showing eight sites and the topography of the surrounding area. 

Table 2.2. Landscape characteristics of each paired site. 

Site Size (ha) Elevation (m) 
Topographic 

Position 
County 

Location 

Farm 1 5.47 832 valley; flood plain Watauga 
Subdivision 1 6.45 824 valley; flood plain 

Farm 2 9.31 888 valley Watauga 
Subdivision 2 9.71 845 valley 

Farm 3 16.63 1019 ridge & valley Ashe 
Subdivision 3 15.56 1129 ridge & valley 

Farm 4 23.74 811 valley Watauga 
Subdivision 4 23.74 825 valley 
Note: Elevation data was taken from a center point within each site.  Ridge and valley 
areas are characterized by both valley areas as well as areas of steeper slopes.   
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I analyzed each site in ArcGIS® using six-inch digital elevation models (DEMs) 

and aerial photography to obtain accurate estimates of site size and physical 

characteristics.  I then calculated farm and subdivision sizes, and if any differences 

greater than one to two hectares occurred between the pairs, I removed land from the 

larger subdivision by randomly choosing a point at an edge location and removing land 

parcels until I achieved a matching size for analysis. 

 

GIS Analysis 
 

I conducted geographic information system analysis using ArcGIS® 9.3, coupled 

with the Patch Analyst 4 (Rempel 2008) extension to examine the spatial structure of 

each of the study sites (site-scale) and its surrounding landscape (landscape-scale). The 

landscape boundary consisted of a 2km2 area surrounding each of the four subdivisions 

and farms.  Using six-inch spatial resolution digital orthophoto quarter-quadrangles 

(DOQQ) (NCFMP 2005) of both Watauga and Ashe counties, I categorized each patch as 

one of eight patch types; built, crop, field, forested, paved, riparian, shrub and water. 

Table 2.3 displays the qualifications and criteria for each patch type.  
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Table 2.3. Qualifications and criteria for each patch type. 
Patch Type Description 
Forest Areas characterized by continuous natural and/or semi-natural tree 

cover of deciduous, evergreen, and mixed forest land; tree canopy 25-
100 percent of cover 

Shrub Areas characterized by natural to semi-natural woody vegetation of 
short aerial height 

Field/woodlot Areas of dominant grass or forb cover, low density herbaceous, and/or 
low density tree or shrub; areas may be subject to grazing and/or used 
for pasture or hay, but not intensively managed; this may also include 
areas cleared for utilities (i.e., power and telephone lines) 

Crop/cultivated Areas used for the production of crops, including herbaceous 
vegetation planted for specific purposes (e.g. food, feed, fiber, etc.), 
field margins of semi-natural habitats surrounding individual crop 
rows and/or crop field perimeters 

Built Highly managed areas with a large percentage of the land covered with 
structures of either commercial, industrial, and/or low to high density 
residential; area may also include linear driveways, lawns, and 
landscaped areas 

Riparian Distinctive natural to semi-natural habitats adjacent to linear water 
bodies that are structurally distinctive from the surround habitats 

Water* All areas of open water including linear water bodies such as streams, 
rivers, and canals and enclosed bodies of water such as ponds, lakes, or 
reservoirs 

Paved Areas of continuous impervious surfaces and/or gravel areas connected 
in linear patterns; primarily highways and roads, but does not include 
individual driveways 

*Denotes areas excluded from the min. requirement of 500m2 patch size 
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Using the ArcGIS® Editor tool at a scale of 1:1,500 (Figure 2.2), I manually 

digitized each habitat patch with a minimum size of 500m2, creating individual vector 

layers and classes for each of the eight habitat patches within the 2km2 area surrounding 

every site (Figure 2.3).  Any class that did not meet the 500m2 minimum patch allowance, 

I included with the adjacent patch type that most closely matched its habitat 

characteristics.  To insure no overlaps or gaps existed between the layers, I snapped each 

vertex of the adjacent layers so that they coincided exactly.  In addition, to avoid an 

exaggerated number of patches, I dissolved the boundary between any adjacent polygons 

within the same patch type (i.e., attribute class). I then combined each of the layers into 

one landscape shapefile by using the union function within ArcToolbox, allowing each 

patch, polygon, and contiguous shapes to be included in one theme for further analysis.   

 

 

(a)  
 

(b) 

Figure 2.2. Habitat detail (a) and digitized example (b) at the minimal zoom of 1:1,500. 
 

 

Forest 

Built 

Field 
Paved 
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Figure 2.3. Fully digitized example of a 2km2 landscape 
surrounding an agricultural site. 

 

At the site spatial scale, I used the county parcel data for Watauga and Ashe 

counties to identify all land parcels within the selected farms and subdivisions.  I 

dissolved the boundaries of the individual land parcels to create one shapefile of each 

site.  Using the site scale shapefile, I then clipped the landscape shapefile to create a site 

scale theme of all patch types within each site. 

To quantitatively characterize the spatial patterns at both the site and landscape 

scales, I used Patch Analyst 4 (Rempel 2008) extension within ArcGIS®.  Patch Analyst 

extension calculates various spatial statistics and metrics that help describe the overall 

landscape structure of specific areas (Table 2.4).  Using this extension, I calculated the  

area and perimeter of each habitat patch, as well as generated spatial metrics for area, 

patch density, size and shape at the landscape-scale (2km2), site-scale and class (patch) 

level.  
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Table 2.4. Spatial analysis metric and statistic summary. 
Spatial Metrics Spatial Statistics 
Area Class Area (ha) 

Total Landscape Area (ha) 

Patch Density  
and Size 

Patch Number 

Mean Patch Size (ha) 

Median Patch Size (ha) 

Patch Size Standard Deviation (ha) 

Patch Size Coefficient of Variance ( %) 

Shape  Edge Density (m/ha) 

Area Weighted Mean Patch Fractal Dimension 
 

 
Area, density and size metrics provide a general understanding of the layout of the 

landscape and the dominant habitat types. Class area indicates how much area each 

individual patch type comprises within each 2km2 landscape and at each individual site. 

General spatial statistics, such as patch number, mean patch size and patch size standard 

deviation and coefficient of variation provide a framework with which to assess spatial 

patterns at all spatial scales.  In order to compare site size of farms and subdivisions with 

patch number and size, I graphed size and number of habitat patches as a function of the 

land area and visually accessed any patterns for both farms and subdivisions at the site 

scale. 

Statistics such as edge density and area weighted mean patch fractal dimension 

(AWMPFD) provide an understanding of the complexity and regularity/irregularity of the 

individual habitat patches by providing measures of the patch shape.  Fractal dimensions 

quantifies the complexity of habitats by using principles of Euclidean geometry to 

provide a measurement of patch shape irregularity and habitat border convolution (Olff 
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and Ritchie 2002; van Hees 1994). Based on Euclidean dimensions, shapes with fractal 

values of one, or close to one, represent habitats with smooth borders (Olff and Ritchie 

2002; van Hees 1994).  The greater the deviation from one, the more convoluted and 

irregular the shape becomes (van Hees 1994).  Given the ambiguity of language used to 

describe fractal measures, others have sought to graphically depict the range of 

complexity (Bourke 2003; Olff and Ritchie 2002).  Such graphics are helpful in 

understanding the degree of change from even a tenth of a point difference in fractal 

dimension (see Bourke 2003).  To determine if any significant difference existed between 

patch shape and composition for farms and subdivisions, I tested the AWMPFD, edge 

density and all habitat patch proportions for farm and subdivision sites using the Mann-

Whitney U test within SAS 9.1.3 within the 90 and 95 percent confidence intervals (SAS 

Institute 2004).   I also tested the same metrics to see if any differences in habitat 

structure and composition occurred at the landscape spatial scale and site spatial scale for 

both farms and subdivisions. 

 

Vegetation Analysis 
 

 
At the patch scale, I conducted a field-based analysis to document the plant 

species composition of each site.  Excluding paved and water patch types from vegetative 

analysis, I limited the data collection to six of the habitat patch types including forest, 

field, riparian, built, crop and shrub.  At each site, I sampled a minimum of two study 

plots per patch, using a modified version of the Intensive plot design developed by 

Barnett and Stohlgren (2003).  The plot design (Figure 2.4) consisted of four 1m2 

subplots all contained within one 100m2 plot. The standard plot configuration was 
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10×10m; however, in some cases irregular shaped patches required a 5×20m modified 

design.  Within each of the 1m2 subplots, I identified all vascular plant species and 

estimated cover to the nearest percent class (<1, 1-5, 5-10, 10-25, 25-50, 50-75, 75-95, 

>95 percent) for each species. In the 100m2 plots, I recorded species presence of all 

vascular plant species. I also collected referenced location data with a Garmin Global 

Positioning System (GPS) unit and recorded latitude, longitude and elevation.  

 

Field Collection 
 

I collected field data during July, August and early September 2008.  At each 

farm and subdivision, I randomly placed a minimum of two plots in each patch.  If the 

patch area was larger than 9.5 hectares, I placed an extra plot within that patch to give a 

more accurate account of the vegetative structure of the larger area.  Within ArcGIS®, I 

used HawthsTools extension (Beyer 2004) to randomly determine the placement of the 

plots within each patch without overlap.  I then extracted the coordinates (latitude and 

longitude) of each of the plots and used a GPS unit to find the plot locations in the field.  

Each GPS location was used as the point-of-origin and west corner of the plot.  The 

location of any point that fell within an area I could not sample, such as a rooftop, I 

adjusted until I reached a suitable sampling location. 
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Figure 2.4. The layout of the plot design; (a) the standard design (b) 
modified design for irregular patch shapes. 

 
 
 
 

 
Figure 2.5. Field data collection and plot layout 
design. 
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Plant Identification 

I identified all plant species using Wofford’s Guide to the Vascular Plants of the 

Blue Ridge (1989) and Weakley’s Flora of the Carolinas, Virginia, Georgia, and 

Surrounding Areas (2007).  I collected, pressed and cataloged any plants that I could not 

identify in the field and gave them a unique classification code for future identification.  

In the I.W. Carpenter, Jr. Herbarium with the help of several botany specialists, I 

identified the collected specimens to species.  In some cases, it was not possible to 

identify the collections to species due to missing flowers, mowed or grazed specimens or 

lack of vegetative matter.  However, I identified all specimens to the lowest possible level 

and recorded each with a unique number.  Often, cultivated plant species proved to be 

very difficult to identify due to the high variability in species types and hybrids.  Where 

possible, I did assign the genus along with the cultivar name according to horticultural 

encyclopedic guides (Brickell 2002; Taylor 2002).  In accordance with the National 

Plants Database (USDA 2009), I also recorded growth form (tree, shrub, herbaceous and 

vine), origin (native or exotic) and lifespan (annual and perennial) data for each of the 

identified species.  Based on species lists compiled by North Carolina Natural Heritage 

Program (2008), I identified all rare species encountered throughout the study.  Further, I 

also identified all noxious weed species based on the Southeast Exotic Pest Plant Council 

(2004) online publication entitled, “Invasive Plants of the Thirteen Southern States.”   

Based on federal noxious weed and state exotic pest council species lists, they complied a 

database for all invasive and noxious weeds for a thirteen state area.  For this study, I 

sub-sampled this list and examined only the plant species categorized as noxious in North 

Carolina. 
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Statistical Analysis 

I performed all statistical analysis in SAS 9.1.3 (SAS Institute 2004).   To test for 

differences in cover and richness between farms and subdivisions, I used the Mann-

Whitney U non-parametric test at the 95 percent confidence interval (p-value ≤ 0.05).  I 

also set a marginal significance level at the 90 percent confidence interval (p-value ≤ 

0.10).  I chose Mann-Whitney U test for all analysis since no assumptions exist for 

normality and is acceptable for smaller sample sizes.   

To calculate average cover for all 1m2 subplots, I assigned a mid-point in each 

cover class range for every species.  I summed total cover (or cover of native and exotic 

species) of each subplot.  I then averaged species cover for the four 1m2 subplots per plot, 

and calculated the mean cover by patch type at each site by averaging all plots per patch 

type.  To see if any habitat type differed in vegetative cover, I compared the mean patch 

type cover between farms and subdivisions. Following the same method as above, I 

calculated relative cover of native and exotic species for each patch type between farms 

and subdivisions and compared the mean patch type values.  To calculate the site level 

weighted total cover, relative native cover, and relative exotic cover for each site, I 

multiplied mean cover (1m2) for each habitat patch type by the habitat percent area 

(calculated in the GIS analysis) at each site. The weighted calculation gives a higher 

weight to habitats that comprise a larger percentage of each site. I then summed these 

weighted values and compared them between each farm and subdivision.  

At 1m2, 4m2 and 100m2 plot scales, I calculated total mean species richness, 

native richness and exotic richness for each patch type.  I totaled all species per plot, used 



 

33 

the NODUPKEY function in SAS to remove any duplicated species and calculated the 

mean plot level richness within each habitat patch at each site.  I then compared total 

species richness, native species richness, and exotic species richness (at 1m2, 4m2 and 

100m2) of patch types between farms and subdivisions.   Similar to the cover calculation 

methods, I generated weighted species richness at 1m2, 4m2 and 100m2 plot scales for 

total, native and exotic species richness. I compared all richness values by testing for 

differences using Mann-Whitney U nonparametric alternative test.   
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Chapter 3 
 

RESULTS 
 

 
GIS Analysis 

 
Landscape Spatial Structure 
  

 The overall landscape scale (~200 hectares) spatial structure surrounding 

both agricultural and developed sites displayed similarity in patch size, shape, richness 

(Table 3.1) and composition (Table 3.2).  I found no significant difference in the amount 

of edge density or area weighted mean patch fractal dimension (AWMPFD) between 

farm or subdivision landscapes.  Patch richness (i.e., forest, field, built, crop, shrub, 

riparian, water and paved) surrounding both farms and subdivisions varied among the 

individual landscapes (Table 3.1).  For both farms and subdivisions, three dominant patch 

types (forest, field, and built) comprised greater than 80 percent of landscape area.  

Forested habitats dominated both landscape types (Table 3.2), accounting for ~62 percent 

of the total landscape surrounding both farms and subdivisions.  Field comprised the 

second most prevalent patch type in both landscape types, followed by built.  The only 

significant differences between landscapes surrounding farms and landscape surrounding 

subdivisions were in the proportion of built habitats (Table 3.2).  Landscapes surrounding 

subdivisions had a higher percentage of built habitats than did landscapes surrounding 

farms.  Built areas accounted for 12.49 percent of the landscape surrounding subdivisions 

but only 8.51 percent of the landscapes surrounding farms.  
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Table 3.1. Landscape scale (~200 hectares) spatial structure for areas surrounding the 
eight study sites. 

Site 
Land 

Area (ha) 
Patch 

Richness 

Number 
of 

Patches 

Mean 
Patch 

Size (ha) 

Edge 
Density 
(m/ha) 

AWMP 
Fractal 

Dimension 

Farm 1 200.59 8 151 1.33 493.47 1.37 
Farm 2 202.94 7 69 2.94 322.49 1.37 
Farm 3 202.45 7 96 2.11 415.02 1.41 
Farm 4 201.80 8 95 2.12 449.37 1.39 
Mean 201.95 7.50 102.75 2.13 420.09 1.39 

Subdivision 1 202.93 8 109 1.86 447.86 1.38 
Subdivision 2 201.24 8 84 2.40 341.79 1.38 
Subdivision 3 202.45 6 110 1.84 446.04 1.40 
Subdivision 4 205.48 7 92 2.23 402.23 1.38 
Mean 203.02 7.25 98.75 2.08 409.48 1.38 
Note: Measures were generated using Patch Analyst spatial statistical function, which 
runs analysis in conjunction with ArcGIS® FragStats. Appendix A, provides detailed 
results from the Patch Analyst analysis for each site. The number associated with each 
farm and subdivision indicates the corresponding paired sites (ex. Farm 1 paired with 
Subdivision 1). 
 

Table 3.2. Percentage of habitat patch types in landscapes (~200 hectares) surrounding 
farms and subdivisions. 
 Landscape Mean Percent (SE)  

Habitat Patch Type 
Agricultural 
Landscape 

Exurban 
Landscape P 

Forest 61.52 (0.08) 62.87 (0.05) 0.44 
Field 20.70 (0.06) 14.34 (0.03) 0.24 
Built 8.51 (0.01) 12.49 (0.01) 0.07 
Crop 3.25 (0.01) 2.39 (0.02) 0.23 
Shrub 2.00 (0.01) 3.20 (0.01) 0.33 
Paved 1.79 (0.00) 1.86 (0.00) 0.50 
Riparian 1.23 (0.01) 1.61 (0.01) 0.23 
Water 1.00 (0.00) 1.24 (0.05) 0.44 
Note: Values are averages for each habitat class by landscape type (n=4 farm 
landscapes, n=4 subdivision landscapes). Standard error values represented in 
parentheses (n=4 farms, n=4 subdivisions).  P-values based on Mann-Whitney U test. 
Bold indicates significance at the 95 percent confidence interval (p ≤ 0.05) or the 90 
percent confidence interval (p ≤ 0.10). 
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Site Scale Spatial Structure 

 
Landscape and Site Scale Comparisons 

Overall, habitat shape varied between subdivision sites and the surrounding 

landscapes.  Subdivisions more than doubled the edge density (Figure 3.1) and had a 

significantly higher mean AWMPFD at the site scale compared to the landscape scale of 

analysis (Figure 3.2).  In contrast, the patch shape on farms at the site-scale was similar to 

the overall landscape-scale measures in both edge density and AWMPFD.   

Habitat patch proportions between landscape spatial scale and site spatial scale 

varied depending on the type of habitat under investigation (Figure 3.3).  Farms 

significantly increased in the amount of crop habitats but decreased in the proportions of 

built and shrub habitat patches (Table 3.3).  Overall, subdivisions demonstrated the 

greatest difference between landscape-scale and site-scale spatial structure than farms.  

Subdivisions significantly increased in the quantity of built habitats and paved areas.  

They also decreased in the amount of forest areas at the site-scale (Table 3.4).   Results 

also indicated a marginally significant decrease in the proportion of crop areas on 

subdivision sites (Table 3.4).   
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Figure 3.1. Landscape and site level edge density (ED) for 
each site type (n=4 farms, n=4 subdivisions).  Different 
letters above error bars indicate a statistically significant 
difference (p-value = 0.02) at the 0.05 level according to 
Mann-Whitney U test. 
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Figure 3.2. Landscape and site level area weighted mean 
patch fractal dimension (AWMPFD) for each site type (n=4 
farms, n=4 subdivisions).  Different letters above error bars 
indicate a statistically significant difference (p-value =0 .02) 
at the 0.05 level according to Mann-Whitney U test. 
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Figure 3.3. Site and landscape spatial scale comparisons of habitat patch 
structure, (a) farms n=4, and (b) subdivisions n=4. 
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Table 3.3.  Comparisons of landscape and site scale habitat patch 
proportions for farms. 

 Farm Mean Percent (SE)  

Habitat Patch Type Landscape  Site  P 
Forest 61.52 (0.08) 44.93 (0.18) 0.23 
Field 20.70 (0.06) 29.12 (0.11) 0.23 
Built 8.51 (0.01) 3.37 (0.08) 0.03 
Crop 3.25 (0.01) 15.69 (0.04) 0.02 
Shrub 2.00 (0.01) 0.00 0.01 
Paved 1.79 (0.00) 1.90 (0.01) 0.44 
Riparian 1.23 (0.01) 2.23 (0.01) 0.32 
Water 1.00 (0.00) 2.75 (0.03) 0.33 
Note: Values represent habitat percent averages across each land use 
type at the site scale of analysis. Standard error values represented in 
parentheses (n=4 farms, n=4 subdivisions).  P-values based on Mann-
Whitney U test. Bold indicates significance at the 95 percent confidence 
interval (p ≤ 0.05) or the 90 percent confidence interval (p ≤ 0.10).  

 
 

Table 3.4.  Comparisons of landscape and site scale habitat patch 
proportions for subdivisions. 

 Subdivision Mean Percent (SE)  

Habitat Patch Type Landscape  Site  P 
Forest 62.87 (0.05) 38.16 (0.12) 0.05 
Field 14.34 (0.03) 15.67 (0.06) 0.44 
Built 12.49 (0.01) 33.63 (0.01) 0.02 
Crop 2.39 (0.02) 0.00 0.09 
Shrub 3.20 (0.01) 2.31 (0.01) 0.33 
Paved 1.86 (0.00) 5.17 (0.01) 0.02 
Riparian 1.61 (0.01) 3.90 (0.02) 0.44 
Water 1.24 (0.05) 1.15 (0.01) 0.15 
Note: Values represent habitat percent averages across each land use 
type at the site scale of analysis. Standard error values represented in 
parentheses (n=4 farms, n=4 subdivisions).  P-values based on Mann-
Whitney U test. Bold indicates significance at the 95 percent confidence 
interval (p ≤ 0.05) or the 90 percent confidence interval (p ≤ 0.10).  
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Farm and Subdivision Site Scale Comparisons 

At the site scale (~6-23 hectares), farms and subdivisions displayed similar mean 

patch richness of 5.8 on farms and 5.3 on subdivisions (Table 3.5).  Thus, every farm and 

subdivision did not contain all eight habitat patch types (Appendix B). Comparisons 

between farm and subdivision site-scale AWMPFD revealed that subdivisions had a 

marginally significantly greater shape complexity than farms, but no difference in edge 

density (Figure 3.4).  

 
Table 3.5. Site scale spatial structure for the eight study sites. 

Site 
Land  

Area (ha) 
Patch 

Richness 

Number 
of 

Patches 

Mean 
Patch 

Size (ha) 

Edge 
Density 
(m/ha) 

AWMP 
Fractal 

Dimension 

Farm 1 5.47 6 10 0.55 1076.82 1.45 
Farm 2 9.31 5 7 1.33 418.21 1.35 
Farm 3 16.63 6 11 1.51 559.76 1.41 
Farm 4 23.74 6 8 2.97 333.71 1.33 
Mean 13.79 5.75 9 1.59 597.12 1.38 

Subdivision 1 6.45 5 10 0.64 942.61 1.42 
Subdivision 2 9.71 4 11 0.88 814.50 1.47 
Subdivision 3 15.57 5 24 0.65 987.87 1.52 
Subdivision 4 23.74 7 29 0.82 768.89 1.43 
Mean 13.87 5.25 18.5 0.75 878.47 1.46 
Note: Measures were generated using Patch Analyst spatial statistical function, which 
runs analysis in conjunction with ArcGIS® FragStats. The number associated with each 
farm and subdivision indicates the corresponding paired sites (ex. Farm 1 paired with 
Subdivision 1). 
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Figure 3.4. Site level area weighted mean patch fractal 
dimension (AWMPFD) for each site type (n=4 farms, n=4 
subdivisions).  Different letters above error bars indicate a 
statistically significant difference (p-value = 0.06) at the 0.10 
level according to Mann-Whitney U test.  

 

Habitat structure varied between farms and subdivisions (Table 3.6).   Farm sites 

lacked shrub habitat, showed significantly low values for built and marginally 

significantly smaller proportion of paved areas than subdivision sites (Table 3.6).  While 

subdivisions did display significantly higher amounts of shrub habitats, they were limited 

in number and percentage across all sites.  Subdivisions lacked cropped areas, but 

displayed a notable percentage of field patches, although there were no differences 

between field habitats on subdivision and farm sites (Table 3.4).  
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Table 3.6. Percentage of habitat patch types at the site scale. 

 Site Mean Percent (SE)  

Habitat Patch Type Farms Subdivisions P 
Forest 44.93 (0.18) 38.16 (0.12) 0.50 
Field 29.12 (0.11) 15.67 (0.06) 0.16 
Built 3.37 (0.08) 33.63 (0.01) 0.02 
Crop 15.69 (0.04) 0.00 0.01 
Shrub 0.00 2.31 (0.01) 0.03 
Paved 1.90 (0.01) 5.17 (0.01) 0.06 
Riparian 2.23 (0.01) 3.90 (0.02) 0.32 
Water 2.75 (0.03) 1.15 (0.01) 0.31 
Note: Values represent habitat percent averages across each land use 
type at the site scale of analysis. Standard error values represented in 
parentheses. (n=4 farms, n=4 subdivisions). P-values based on Mann-
Whitney U test. Bold indicates significance at the 95 percent confidence 
interval (p ≤ 0.05) or the 90 percent confidence interval (p ≤ 0.10). 

 

Patch number and patch size directly depended in the total land area of each farm 

and subdivision.  Farm and subdivision sites displayed the greatest similarity in patch 

number (Figure 3.5) and patch size (Figure 3.6) when site size remained small.  As site 

size increased, the similarity between the two site types diminished. On subdivisions, the 

number of patches increased as site size increased (Figure 3.5).  However, farm sites did 

not display this relationship.  Conversely, when comparing the mean patch size between 

the paired sites with the total site area, farms displayed larger patches as land area 

increased, while subdivisions did not exhibit the same relationship (Figure 3.6).  For 

larger sites, patch size was five times greater for farms than for subdivisions.  
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Figure 3.5. Site scale habitat patch number as a function of site size (n=4 farms, n=4 
subdivisions). 

 
 
 
 
 

 
Figure 3.6. Site scale mean patch size as a function of site size (n=4 farms, n=4 
subdivisions). 
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Vegetation Analysis 
 
 
Flora  
 
The complete data set from 138 100m2 plots contained 681 species (Appendix C) across 

all eight sites.  Overall, I sampled forty-six plots on farms and ninety-two on 

subdivisions.  In total, the forty-six plots on farms contained 329 species while the 

ninety-two plots on subdivisions contained 538 species (Table 3.7).  For both land use 

types, perennial herbaceous plants characterized the majority of species (Table 3.8).  

 
Table 3.7. Number of sampled 100m2 plots and total 
number of species encountered for each patch type at 
farms and subdivisions. 
 Farms  Subdivisions 

Number of Plots    
Forest 8  13 
Field 14  14 
Riparian 4  8 
Built 6  45 
Crop 14  0 
Shrub 0  12 
Total 46 

 
 92 

Number of Species    
Forest 84  94 
Field 107  46 
Riparian 29  65 
Built 38  291 
Crop 118  0 
Shrub 0  42 
Total 329  538 

Note: Data are total number of plots sampled in each 
patch type at each site type (all sites combined), and 
total number of species encountered in these plots. 
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Table 3.8. Percentage of species encountered in all sampled 100m2 plots on farms and 
subdivisions by growth form and lifespan. 
 Farms  Subdivisions 
 Total G H S T V U  Total G H S T V U 

Annual 20.2 2.7 15.9 0 0 1.6 0  14.1 1.5 11.9 0 0 0.7 0 
Perennial 62.5 10.9 33.0 6.4 8.0 4.2 0  65.6 9.3 32.9 9.9 10.2 3.4 0 
Biennial 2.7 0 2.7 0 0 0 0  2.9 0 2.9 0 0 0 0 
Unknown* 14.6 6.4 7.1 0.5 0 0.3 0.3  17.3 6.0 10 1.1 .4 0 0.4 

Total 100 20.0 59 7.0 8.0 6.1 0.3  100 16.5 57.4 11.0 10.6 4.1 0.4 
Note: G = grasses; H = herbaceous; S = shrub; T = tree; V = vine; U = unknowns 
All values presented are percentages of the total number of species encountered on farms 
and subdivisions. 
* indicates plants without reproductive parts and could not be identified to species 
 

Of the total 681 species collected, twenty were known noxious weed species (SE-

CPPT 2004) and nine were considered rare in North Carolina (NC NHP 2008).  Table 3.9 

presents the rare species and extinction risk ranking according to the North Carolina 

Natural Heritage Program (2008), including one endangered species, Houstonia montana 

(Table 3.10).  Among noxious weed species, seven were found on both site types with 

Rosa multiflora being the most prevalent of any species (NC NHP 2008).   

 
Table 3.9. Total rare species identified.  

Species  Common Name 
Current 
Status 

Projected 
Status F S 

Berberis canadensis American Barberry SR-T SC-V x  
Carya laciniosa Big Shellbark Hickory SR-P T  x 
Cardamine rotundifolia Mountain Watercress SR-P T x x 
Euphorbia commutata Cliff Spurge SR-P T  x 
Houstonia montana Roan Mountain Bluet E E  x 
Juniperus communis Dwarf Juniper SR-D SC-V  x 
Kalmia angustifolia Sheep-laurel SR-P T  x 
Rubus idaeus Red Raspberry SR-P T x x 
Trillium simile Sweet White Trillium SR-L T  x 
Source: N.C. Natural Heritage Program 
Note: F (farm)s; S (subdivisions); E (endangered), T (threatened), SR-T (species rare 
throughout range), SC-V (special concern), SR-L (species limited to North Carolina and 
adjunct states), SR-D (species disjunct in North Carolina), SR-P (species only found in 
periphery locations of range). 
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Table 3.10. Federal and state listed noxious weed species for North Carolina 
encountered throughout the study. 

Species Common Name F S Cultivated 
Alliaria petiolata Garlic Mustard  x  
Berberis thunbergii Japanese Barberry  x  
Buddleja davidii Butterflybush x x x 
Celastrus orbiculatus Oriental Bittersweet x x  
Cirsium vulgare Bull thistle  x  
Euonymus alatus Winged Burning Bush  x x 
Euonymus fortunei Winter Creeper  x x 
Hedera helix English Ivy  x x 
Hemerocallis fulva Orange Daylily  x x 
Lespedeza cuneata Chinese Lespedeza  x  
Lonicera japonica Japanese Honeysuckle x x  
Microstegium vimineum Nepalese Browntop x x  
Polygonum cuspidatum Japanese Knotweed  x  
Pyrus calleryana Bradford Pear x  x 
Rosa multiflora Multiflora Rose x x  
Rubus phoenicolasius Wine Raspberry x   
Sorghum halepense Johnsongrass x x x 
Spiraea japonica Japanese Spiraea x x x 
Vinca major Bigleaf Periwinkle  x x 
Vinca minor Common Periwinkle  x  
Source: Southeastern Exotic Pest Plant Council, “Invasive Plants of the Thirteen 
Southern States” 
Note: Species only represent noxious weed species for North Carolina in accordance 
with federal noxious weed lists and state exotic pest council reports. 
 
 
Vegetative Cover 
 

Agricultural and exurban areas were similar in vegetative cover at the 1m2 scale.  

I found no significant difference between farms and subdivisions in any measure of cover 

including the total cover of each of the six-patch types (Table 3.11), total weighted cover, 

and relative native and exotic cover (Table 3.12).  I also found no significant differences 

in native and exotic relative cover within the six habitat patch types between site types 



 

48 

(Table 3.13).  Due to the lack of shrub habitat on farms and the lack of crop habitat on 

subdivisions, I could not test for differences of in native and exotic relative cover 

between the site types.   

 
Table 3.11.  Comparisons of mean percent cover (1m2 subplots) for each habitat patch 
type between farms and subdivisions. 
 Farms  Subdivisions P 

(Mann-Whitney U) Habitat Type Mean (SE) n  Mean (SE) n 
Cover (1m2)       
Forest 88.9 (8.5) 3  100.6 (6.0) 4 0.30 
Field 212.9 (24.7) 4  232.7 (47.2) 3 0.50 
Riparian 145.3 (21.7) 2  145.5 (21.9) 2 0.35 
Built 166.7 (32.2) 3  129.8 (12.5) 4 0.30 
Crop 169.1 (9.9) 4  n/a 0 n/a 
Shrub n/a 0  205.3 (23.9) 3 n/a 
Note: P-values based on Mann-Whitney U test.  Standard error values represented in 
parentheses.  

 

 
Table 3.12. Weighted total cover and relative native and exotic cover at 1m2 for each 
site. 
 Farms  Subdivisions P 

(Mann-Whitney U)  Mean (SE)  Mean (SE) 

Weighted Cover (%)    
Total  132.4 (13.1)  132.4 (16.3) 0.50 

Relative Cover (proportion of total cover)   
Native .57 (6.8)  .50 (9.7) 0.33 
Exotic .30 (3.9)  .30 (5.0) 0.44 
Note: P-values based on Mann-Whitney U test (n=4 farms, n=4 subdivisions).  Standard 
error values represented in parentheses.  Relative cover does not equal one due to 
unknown species that could not be identified as either native nor exotic. 
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Species Richness 

Species richness within the six habitat patch types varied depending on the type of 

habitat and the scale of analysis.  At 1m2 and 4m2 subplot levels, I found no significant 

differences in species richness of any patch type between farms and subdivisions within 

any of the six patch types (Table 3.14).  However, at the whole plot level (100m2), farms 

displayed a higher richness than subdivisions within forested and field habitats (Table 

3.14).  

 
Table 3.14. Total species richness at three plot scales at farms and subdivisions for each 
patch type. 
 Farms  Subdivisions  

Habitat Type Mean (SE) n  Mean (SE) n P 

Richness (1m2)       
Forest 8.0 (0.9) 3  8.6 (1.4) 4 0.50 
Field 10.4 (1.0) 4  10.7 (0.6) 3 0.50 
Riparian 8.2 (2.2) 2  9.8 (1.2) 2 0.35 
Built 8.5 (1.9) 3  6.3 (0.8) 4 0.24 
Crop 8.7 (0.3) 4  n/a 0 n/a 
Shrub n/a 0  9.5 (1.2) 3 n/a 

Richness (4m2)       
Forest 20.8 (1.2) 3  21.1 (1.8) 4 0.50 
Field 24.3 (1.4) 4  22.5 (0.9) 3 0.19 
Riparian 22.3 (3.8) 2  26.1 (4.1) 2 0.35 
Built 19.5 (4.0) 3  15.6 (1.8) 4 0.30 
Crop 22.1 (0.9) 4  n/a 0 n/a 
Shrub n/a 0  23.5 (3.0) 3 n/a 

Richness (100m2)       
Forest 41.8 (2.4) 3  34.4 (1.7) 4 0.03 

Field 40.7 (2.2) 4  30.4 (0.7) 3 0.03 

Riparian 49.3 (4.8) 2  47.9 (3.9) 2 0.35 
Built 36.3 (7.7) 3  27.9 (3.0) 4 0.12 
Crop 34.1 (2.7) 4  n/a 0 n/a 
Shrub n/a 0  37.0 (4.2) 3 n/a 
Note: P-values based on Mann-Whitney U test. Bold indicates significance at the 95 
percent confidence interval (p≤0.05) or the 90 percent confidence interval (p≤0.10).  
Standard error values represented in parentheses. 
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Site level weighted total species richness did not differ between farms and 

subdivisions at the 1m2 and 4m2 sample scales (Table 3.15).  The most notable difference 

existed between total richness at the plot scale of analysis.  Agricultural sites had higher 

total richness than the developed sites (Table 3.15).  Native and exotic species richness 

also varied depending on the scale of analysis and the habitat type.  At 1m2 and 4m2, I 

found no significant difference in native or exotic richness within any of the six patch 

types (Table 3.16).  At the plot scale (100m2), weighted site level native and exotic 

richness values were more different.  Farms had marginally higher native species at this 

scale (Table 3.15).  

 

 

Table 3.15. Weighted site level richness for total, native and exotic species 
at three plot scales for farms and subdivisions. 
 Farms  Subdivisions  

 Mean  Mean P 

Richness (1m2)     
Total 8.3 (0.9)  7.3 (0.6) 0.24 
Native 5.0 (0.7)  4.3 (0.9) 0.33 
Exotic 2.7 (0.5)  2.5 (0.5) 0.44 

 Richness (4m2)     
Total 20.7 (1.4)  17.8 (0.9) 0.16 
Native 12.8 (1.1)  10.5 (1.6) 0.24 
Exotic 6.1 (1.1)  5.7 (0.9) 0.44 

Richness (100m2)     
Total 39.2 (2.0)  29.8 (2.1) 0.02 

Native 26.0 (3.1)  18.1 (2.2) 0.06 

Exotic 10.1 (1.7)  8.9 (1.1) 0.33 
Note:  P-values based on Mann-Whitney U test. Bold indicated significance 
at the 95 percent confidence interval (p≤0.05) or the 90 percent confidence 
interval (p≤0.10).  Standard error values represented in parentheses (n=4 
farms, and n=4 subdivisions). 
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When broken down into individual habitat types, forested areas on farms also 

displayed significantly greater native species than subdivisions, while subdivisions 

displayed a significantly higher amount of exotic species within these same forested 

habitats (Table 3.16; Figure 3.7).  Field habitats on farms had marginally higher exotic 

richness than fields on subdivisions (Table 3.16).   
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Figure 3.7. Native and exotic species richness at the plot level (100m2) within 
forested habitats (n=3 farms, and n=4 subdivisions).  Standard error 
represented by error bars.  Different letters above error bars indicate a 
statistically significant difference (native p-value =  0.03 and exotic p-value = 
0.05) at the 0.05 level according to Mann-Whitney U test. 
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Chapter 4 
 

DISCUSSION 
 
 

GIS Analysis 
 
 
Landscape and Site Scale Spatial Structure 
 
 
Landscape Structure 

The landscape composition surrounding both farms and low-density residential 

subdivisions demonstrates the rural nature of the of the study locale and resembles the 

habitat composition and structure of the larger region.  Within both landscape types, the 

dominant habitats included forest, field and built with the largest percentage of habitat 

occupied by forested patches (~62 percent).  These findings coincide with other 

documented land use/cover patterns for the region.  According to the N.C. Natural 

Heritage Program (2000, 1999), forested habitats make up around 67 percent of the land 

use for Watauga and Ashe Counties, and 80 percent of the larger Blue Ridge Mountain 

ecosystem.  The low percentage of cropped habitat (~3 percent) in both landscapes is also 

consistent with recent reports for the region.  NC NHP (2000, 1999) estimated that 

agricultural practices (i.e., pastures and agricultural fields) comprise 28 percent of land 

area, but cropped land area only accounted for 3 percent. 
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Landscape and Site Scale Comparisons  

Comparisons of site scale spatial data to the landscape scale spatial measures help 

provide a framework for understanding how farms and subdivisions change and/or 

maintain habitat composition and structure of the larger landscape or region 

(Lindenmayer and Fischer 2006).  When comparing the site scale spatial structure of 

farms and subdivisions to the surrounding landscape spatial structure, two patterns arose.  

The first pattern was the similarity of site-scale patch composition of both farms 

and subdivisions to patch composition at the landscape scale.  Similar to the landscape-

scale, at the site scale for both farms and subdivisions, forest and field habitats accounted 

for over 50 percent of the habitat patch matrix.  High forest cover on agricultural lands 

may seem surprising given reports directly attributing forest cover loss to agricultural 

activities (Foley et al. 2005).  However, according to McNeely and Scherr (2003), many 

farming practices maintain tree cover in and around the farm for forest resources such as 

timber, fruits, nuts and shade.  Gibson et al. (2007) found similar results for organic 

farms in the southwest region of England where they noted a high number of woodland 

areas that seemed to be attributed to the direct planting efforts of the farm 

operators/owners.  The amount of open field areas on farms was also likely due to active 

management of farm owners for resources such as pasture and hayfields.  

The second pattern that emerged was the variation in measures of habitat shape 

between site scale spatial structure and landscape scale spatial structure.  Habitat shape 

on farms maintained a closer relationship to the larger landscape than did habitat shape 

on subdivisions (Table 3.1; Table 3.3).  Subdivisions displayed higher AWMPFD values 

and more than doubled the measure of edge density when compared to the corresponding 
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landscape values. These results suggest that habitat patch structure may become more 

complex with increased exurban development.  Such increases in shape complexity may 

have broader implications for the patterns of species assemblages of a variety of taxa 

(Harvey 2007; McNeely and Scherr 2003) including increased susceptibility to invading 

species (Cumming 2002).   

   

Farm and Subdivision Site Scale Comparisons 

The most obvious differences between farm site-scale patch composition and 

subdivision site-scale patch composition were in the lack of crop habitats on subdivisions 

and the lack of shrub habitats on farms.  According to Bock and Bock (2009), the first 

observable change to habitat structure upon conversion of agricultural land to exurban 

development is the replacement of agricultural habitats by buildings, landscaping, and 

roads.  My findings directly display this relationship revealing no crop habitats on 

subdivisions but higher percentages of built and paved areas.  There are several possible 

reasons for the occurrence of shrub habitats on subdivisions and the lack on farms.  On 

farms, it may be due to active management by farm owners to maximize all cultivatable 

land.  In contrast, on subdivisions former field and crop areas may be purposely left un-

tended and allowed to mature. Through succession, these areas would develop into shrub 

habitats and ultimately forest over time.  Additionally, shrub habitats on subdivisions 

may represent areas of forest that were cleared during development but are no longer 

actively cleared or managed by homeowners. 

While subdivisions maintained a high percentage of forested areas at the site-scale 

(~45 percent).  According to Bock and Bock (2009), since most exurbanites locate in 
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rural areas for the natural amenities, it is common to find that most exurban land parcels 

consist of upwards of 94 percent of some type of natural vegetation.  Valued for the 

recreational activities and intrinsic value of natural settings, exurban homeowners often 

prefer living in areas with some intact forest (Brown et al. 2008).  The amount of field 

habitat on subdivisions seems surprising based on a survey of exurban homeowners 

conducted by Brown et al. (2008).  He reported that most homeowners in Southeastern 

Michigan preferred land parcels that consisted of higher percentage of forested habitats 

rather than field or open-space.  However, several homeowners within my four 

subdivision sites noted that the entire community maintained field areas for valued 

activities such as nature watching (i.e., deer, birds and other wildlife), horseback riding 

and other recreational activities.  These differing viewpoints influence the variability in 

land management from place to place, and demonstrate how landscape structure in 

human dominated areas can be directly dependent on the values of the individual 

homeowners and/or community. 

Overall, subdivisions displayed a higher amount of habitat fragmentation than 

farms.  This was especially true within larger subdivisions.  The degree of fragmentation 

on each subdivision was directly dependent on land area.  The size of the habitat patches 

remained small (~1.5 acres), regardless of subdivision area, but the number of patches 

increased as land area increased.  This reveals that spatial structure of subdivisions 

consists of greater numbers of small habitats.  For farms, I did not find this same 

relationship.  Farms maintained a consistent number of patches, regardless of farm size, 

and as land area increased, the size of the habitat patches also increased.  These findings 

provide clues as to how patch structure may change as land use changes from farms to 
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subdivisions.  Based on these results, we can expect habitat change from large continuous 

patches to small and fragmented patches with land conversion.  However, when 

subdivisions remained small (~5-10 hectares), patch number and size more closely 

corresponded with patterns on similar sized farms. 

Increased fragmentation of forests, open-space and agricultural lands by land-use 

change to exurban development is a common trend around the United States and in 

countries such as Japan (Sorenson 1999) and The Netherlands (van der Valk 2002).  For 

example, Robinson, Newell, and Marzluffa (2005) described single-family exurban 

developments in Kings County, Washington, as highly fragmented with dispersed 

remnant patches of vegetation.  Some attribute the increased fragmentation in 

subdivisions to the extensive road networks throughout developments, especially within 

larger sized subdivisions (Bock and Bock 2009; Harden 2004; Odell, Theobald, and 

Knight 2003).  As one of the major contributors to biodiversity loss (Lindenmayer and 

Fischer 2006; Olff and Ritchie 2002; Pimm and Raven 2000; Vitousek et al. 1997), 

habitat fragmentation proves highly important to conservation (Fischer and Lindenmayer 

2007; Fazey, Fischer, and Lindenmayer 2005; Haila 2002).  According to Fischer and 

Lindenmayer (2007), effects of fragmentation to biodiversity range from the reduction of 

native species richness to declines in avian populations, amphibians and invertebrates.  

Fragmentation can also lead to other indirect impacts such as disruption of animal 

movements (Dale et al. 2005), alteration of breeding patterns, and species interactions 

involving competition, predation, parasitism and mutualism of plants, animals, and 

invertebrates (Fischer and Lindenmayer 2007).  
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Subdivisions also showed a significantly higher degree of shape complexity than 

farms in AWMPFD.  This indicates that patches on subdivisions had more complex 

perimeters than similarly sized patches on farms and the surrounding landscape. In an 

analysis of land cover transformations in Washington State’s Puget Sound region, 

Robinson, Newell, and Marzluffa (2005) recorded similar vegetative patch shape patterns 

for exurban single-family developments.  They recorded increased amounts of edge 

density combined with decreased size of forested wildlands, which they linked directly to 

the expansion of exurban developments around the area.  The edge density and patch 

shape can affect vegetation by altering reproduction, seed dispersal and growth (Hobbs 

and Yates 2003).  There can be both positive and negative effects to species composition 

with increased amounts of edge.  Some noted increased species diversity and richness 

along edges (Yandik 2009; Bock, Jones, and Bock 2006a), but most also report that many 

species were non-native (Honnay, Verheyen, and Hermy 2002) and weedy (Beer and Fox 

1997).  Further, Lindenmayer and Fischer (2006), noted that linear shaped patches, such 

as those around power lines or road networks, may be more prone to abiotic and biotic 

edge effects due to small core area.   

 

Vegetation Analysis 
 

Species Composition  
 

On average, farms displayed a higher number of species per plot (100m2) than 

subdivisions.  Further, results demonstrated that for both agricultural and developed areas 

in the western region of North Carolina, there exists great potential for the establishment 

of perennial species.  The majority of the species for both farms and subdivisions 
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consisted of herbaceous perennial plants accounting for over 60 percent of the species 

identified.  Other studies on urban domestic gardens, found similar percentages of 

perennial species in Sheffield, UK (Smith et al. 2006).  According to this study, over 60 

percent of species identified were perennial/biennials, and similar to my findings on 

subdivisions, they found that 16 percent of species were trees and 8 percent were shrubs 

(Smith et al. 2006).  

Of the total species collected, nine were rare species for North Carolina, including 

one endangered species, Houstonia montana.  This species was found twice on one 

subdivision, once in a forest habitat and once in a field habitat.  The most common rare 

species was Cardamine rotundifolia (mountain watercress) and Rubus idaeus (red 

raspberry).  As a semi-aquatic species (NC NHP 2008), the location of Cardamine 

rotundifolia generally corresponded with areas along seeps, streams or river channels on 

both farms and subdivisions.  Rubus idaeus generally corresponded with built areas on 

subdivisions and field and crop patches on farms, with the majority of occurrence related 

to purposeful plantings by home and farm owners.  The few individuals that were located 

in forested locations likely escaped cultivation. 

 Across all sites, I identified twenty invasive species classified as noxious weeds 

according to state or federal criteria (SE-CPPT 2004).  Of the twenty, almost half were 

cultivated or planted by the farm and homeowner or subdivision developer including 

species such as Buddleja davidii (butterflybush), Euonumus alatus (winged burning 

bush), Euonymus fortunei (winter creeper), Hedra helix (english ivy), Hemerocallis fulva 

(orange daylily), Pyrus calleryana (bradford pear), Sorghum halepense (Japanese 

spriaea), and Vinca major (bigleaf periwinkle).  Other species such as Rosa multiflora 
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(multiflora rose), Polygonum cuspidatum (Japanese knotweed), and Cirsium vulgare (bull 

thistle) are highly aggressive weedy species that tend to correspond to areas of high soil 

disruption.   

 
Vegetative Cover 

Farms and subdivisions showed striking similarity for total weighted cover and 

for cover in specific habitat patch types.  I found the same similarity in relative native and 

exotic species cover.  These results demonstrate the potential for both organic agriculture 

and exurban development to maintain a thick vertical vegetative structure leaving few 

areas of bare ground.  However, differences in compositional structure still warrants 

further examination to fully understand the full degree of similarity between farms and 

subdivisions.  Maestas, Knight, and Gilgert (2003) found contrasting results reporting 

higher nonnative cover in exurban areas than on ranches, which they attributed to human 

plantings and introduction of alien species as well as disturbance from houses, roads and 

trails.  

 
Species Richness 
 

Overall, farms demonstrated higher (100m2 scale) total weighted species richness 

than subdivisions, suggesting that as land-use changes from agriculture to exurban 

development there is great potential for a decrease in overall species richness.  These 

findings correspond with documented trends of decreased species richness along the 

rural-urban gradient (McKinney 2002).  Maestas, Knight, and Gilgert (2003) reported 

such trends noting higher plant species richness on ranches in Larimer County, Colorado 

than in exurban developments.  Conversely, Bock et al. (2007) found higher plant species 
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richness on cattle ranches when compared to exurban developments in southwestern 

Arizona.  Other agricultural land uses have also been found to support high species 

richness, especially small organic operations like those examined in this study (Boutin, 

Baril, and Martin 2008; Gibson et al. 2007; Mayfield, Ackerly, and Daily 2006).  Further, 

these results also contrast findings regarding increased species richness due to urban 

domestic gardens (Smith et al. 2006; Thompson et al. 2007).  Within this study 

landscaping and purposeful plantings did not seem to play that large of a role in the 

overall weighted species numbers.  However, since this study was not a total inventory, 

there were areas left unsampled. 

Farms also displayed significantly higher numbers of native species than 

subdivisions. Others have found similar results in studies that compared exurban 

development to ranchlands and/or undeveloped areas. Maestas, Knight, and Gilgert 

(2003) reported higher numbers of native species on ranchlands than on exurban 

developments, which they attributed to human activities that either accidentally or 

deliberately increased the numbers of introduced non-native competitive species.  In a 

study comparing exurban development to natural (i.e., undeveloped) areas, Lenth, 

Knight, and Gilgert (2006) also documented decreased numbers of native plant species 

within exurban developments.  While both of these studies documented decreases in 

native species with development, they also reported a significant increase in exotic 

species richness (Lenth, Knight, and Gilgert 2006; Maestas, Knight, and Gilgert 2003).   

In other studies on domestic gardens, Thompson et al. (2003) reported similar results 

noting that most plant species identified were typically alien to the area.  This trend of 

increased exotic species with development is perhaps the most commonly documented 
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trend in studies in exurban developments (Huntsinger 2009; Hansen et al. 2005; Maestas, 

Knight, and Gilgert 2003).  In this study, exotic richness was generally low in all patch 

types and at all sites.  Further, I did not find any significant difference in the total number 

of exotic species between farms and subdivisions.    

Analysis of species richness yielded contrasting results for the different habitat 

patches.  At the plot level (100m2), farms showed a tendency for higher richness values 

than subdivisions for all comparable patch types, but only had significantly higher 

richness in field and forest habitats. While field habitats on farms displayed a 

significantly higher number of total species than subdivision fields, a large number were 

exotic.  This may be attributed to escaped exotics from nearby habitats such as crop fields 

or sown exotic species planted for purposes such as hay or grazing of livestock.  

Applications such as fertilizers may also contribute to degraded soil structures that may 

increase the number of exotic species (Altieri 1999; Paoletti 1999).   

My results further support the claim that low-density/exurban development may 

increase the number of exotic species in surrounding natural/semi-natural habitats 

(Huntsinger 2009; Hansen et al. 2005; Maestas, Knight, and Gilgert 2003).  Forest areas 

in farms had significantly higher total species richness and native species richness forests 

in than subdivisions.  Within these same forested habitats, farms also had significantly 

lower numbers of exotic species than subdivisions.  Thus, forests in subdivisions had 

significantly lower numbers of native species but also significantly higher richness of 

exotic species than farms.  Several possible explanations for these differences include 

increased habitat fragmentation and higher irregularity of patch shape on subdivisions.  

Other possibilities include increased direct human and domesticated animal interactions 
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and/or direct homeowner management of the natural/semi-natural areas in subdivisions as 

compared to farms. Thus, as land-use changes from agriculture to low-density 

subdivisions, we can expect a decline in native species richness within the forested 

habitats.  Further, since many exurban developments are located near forest areas (Bock 

and Bock 2009; Brown et al. 2008; Hansen et al. 2005), these findings raise questions as 

to future health of these natural habitats and their potential for biodiversity conservation.  

 

Implications for Biodiversity 

 Results from this study demonstrate that both agriculture and exurban 

development have tremendous effects on habitat composition and structure as well as 

species assemblages.  Further, they also display a potential to affect broader biodiversity 

patterns involving species assemblages of a wide variety of animal species, 

microorganisms, and invertebrates.  According to Benton, Vickery, and Wilson (2003), 

heterogeneous settings such as those in this study may potentially provide habitat for a 

high diversity of organisms.  However, since increased amounts of fragmentation and 

smaller habitats have been linked to losses of species, subdivisions may be affecting 

broader diversity patterns of avian and mammalian (especially large species) populations 

(Fischer and Lindenmayer 2007) to a greater degree than the agricultural areas presented 

in this study.  Pidgeon et al. (2007) found negative correlations between housing density 

and populations of forest and woodland avian species including short-distance migrants, 

ground-nesting species and cavity-nesting species.  However, they did find some positive 

species richness relationships in synanthropic species within specific areas (Pidgeon et al. 

2007).  The lower plant species richness on subdivision sites in this study may potentially 
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decrease a variety of species that have mutualistic relationships with plant species.  

Further, decreases in native species in forest habitats on subdivisions may have broader 

influences on specialist species that depend on specific vegetative matter for survival.  

However, since the broader biodiversity patterns are beyond the scope of this study, these 

are only speculations and merit further examination.  
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Chapter 5 

CONCLUSION 
 
 

Results from this study show the potential capability of rural land use to influence 

a wide array of habitats by affecting patch structure, total species richness, and native and 

exotic species richness.  The degree of impact of rural land uses such as organic 

agriculture and low-density residential development depends on the scale of analysis and 

the habitat type under investigation. The greatest differences in floristic biodiversity 

between farms and subdivisions existed at the 100m2 scale and within natural/semi-

natural habitats.  At the 100m2 scale, farms had higher total species richness and native 

species richness than subdivisions.  If these trends continue at higher spatial scales such 

as site or landscape, there could be tremendous concern over the loss of floristic diversity 

on and surrounding rural residential developments.  

Forested habitats comprised the highest proportions of any patch type within both 

farm and subdivision sites.  These results shed some positive light that both organic 

agriculture and low-density residential development may maintain some forest habitats as 

opposed to clear cutting entire areas (at least within the observed spatial scales). 

However, at the patch-scale of analysis, forested habitats displayed the greatest difference 

in species richness between the two land use types, which may be of greatest 

conservation concern and further amplify the need for multi-scale analysis.  Forests on 

farms maintained higher total and native species richness than forests on subdivisions. 
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These results indicate that as land-use changes from agriculture to low-density 

residential development, we can expect an overall decrease in floristic diversity within 

forest areas.  Further, subdivisions not only had significantly lower numbers of native 

species within forested habitats but also had higher numbers of exotic species.  These 

findings are of great concern because most residential developments, like those in this 

study, tend to coincide with locations of high forest area and many pose great threat to 

surrounding natural areas.    

As low-density residential developments continue to replace agricultural areas in 

this region, we may begin to see greater changes to our forest ecosystems. Reasons 

explaining the greater degree of impact to species richness within forested habitats on 

subdivisions warrant additional examination.  As population pressures continue to rise 

and natural areas experience greater ecological pressure due to human involvement, a 

tremendous need exists to understand how specific human activities may alter natural 

habitats.  Such knowledge can inform land management strategies including land 

conservation (e.g. land trusts) and sustainable development practices that may mitigate 

harmful environmental effects. 

Overall, low-density residential subdivisions showed the greatest impact to habitat 

structure revealing increased amount of habitat fragmentation, especially at larger 

subdivision sizes.  Many note that habitat fragmentation can drastically alter species 

numbers (Lindenmayer and Fischer 2006; Olff and Ritchie 2002; Pimm and Raven 2000; 

Vitousek et al. 1999) and could be a contributing factor to overall loss of species on 

subdivisions as well as increased number of exotic species in forest habitats.  Since 

fragmentation is often linked to increased housing density and road networks (Bock and 
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Bock 2009; Harden 2004; Odell, Theobald, and Knight 2003) some claim that clustered 

developments would alleviate some of the environmental stress (Hansen et al. 2005).  

However, there are two conflicting views in this area.  Bock and Bock (2009), claim that 

low density dispersed housing may decrease the effects to the natural areas.  Certainly the 

effects of both types of residential subdivisions needs further evaluation before making a 

suggestion towards either development pattern, for patterns may be region specific and 

vary between vegetative composition and structure.   

As land-use changes, further concerns exist as to how increased fragmentation 

and floristic species loss may affect higher levels of biodiversity.  Lower vegetative 

richness and increased exotic species may contribute to decreased numbers of native 

higher order species such as birds, mammals and invertebrates, but may increase the 

number of human commensal species.  Concerns also exists when considering the effects 

of land-use conversion from more intensive agricultural practices such as conventional 

agriculture to exurban development.  Since this study presents the best case scenario for 

agriculture by examining organic practices, we may find greater impacts to species within 

different agricultural landscapes.  However, results from this study may inform land use 

and farm land preservation decisions that promote alternative agriculture practices which 

reduce environmental impacts. 

Obviously, this study reveals the potential negative environmental effects of 

uncontrolled rural development in both agriculture and exurban development and 

magnify the need for increased communication between scientific researchers, policy 

makers and landowners.  We do not know how changes such as habitat fragmentation, 

decreased species richness and native species loss will affect the surrounding natural 
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areas such as national forests or less disturbed areas of privately owned land.  However, 

further research might yield answers to these questions, and aid in the development of 

conservation measures to help protect the biodiversity of the Southern Appalachian 

region. 
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APPENDIX A 
 

Landscape Spatial Scale Habitat Patch Maps and Complete Patch Analyst Measures
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Figure 1. ASU Sustainable Farm (farm 1) landscape spatial scale habitat patch 
structure. 
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Figure 2. Maverick Farm (farm 2) landscape spatial scale habitat patch structure. 
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Figure 3. Creeksong Farm (farm 3) landscape spatial scale habitat patch structure. 
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Figure 4. Watauga River Farms (farm 4) landscape spatial scale habitat patch 
structure. 
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Figure 5.  Riverside Homes (subdivision 1) landscape spatial scale habitat patch 
structure. 
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Figure 6. The Glen at Mast Gap (subdivision 2) landscape spatial scale habitat 
patch structure. 
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Figure 7. Laurel Mountain (subdivision 3) landscape spatial scale habitat patch 
structure. 
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Figure  8. Shull’s Farm (subdivision 4) landscape spatial scale habitat patch 
structure. 
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Table 1.  All generated patch analyst measures for landscape spatial scale 
surrounding farms. 
  F1 F2 F3 F4 

Total Land Area (ha) 200.59 202.94 202.45 201.80 
Patch Number 151.00 69.00 96.00 95.00 
Mean Patch Size (ha) 1.33 2.94 2.11 2.12 
Median Patch Size (ha) 0.27 0.41 0.43 0.51 
Patch Richness 8.00 7.00 7.00 8.00 
Patch Size Coefficient of 
Variation (%)  285.95 347.59 409.01 266.94 
Patch Size Standard 
Deviation (ha) 3.80 10.22 8.63 5.67 
Mean Shape Index 2.15 2.04 2.16 2.11 
Area Weighted Mean 
Shape Index (%) 2.38 2.89 3.53 2.97 
Mean Perimeter-Area Ratio  1580.07 1035.79 1168.27 1002.08 
Mean Patch Fractal 
Dimension 1.48 1.43 1.45 1.43 
Area Weighted Mean Patch 
Fractal Dimension 1.37 1.37 1.41 1.39 
Edge Density (m/ha) 493.47 322.49 415.02 449.37 
Total Edge (m) 98986.73 65446.34 84019.58 90682.67 
Mean Patch Edge (m/ha) 655.54 948.50 875.20 954.55 
Shannon's Diversity Index 1.34 0.65 1.13 1.38 
Shannon's Evenness Index 0.64 0.33 0.58 0.66 

Patch Type Percents     
Forest 48.00 83.40 58.46 56.24 
Shrub 1.52 0.39 2.78 3.31 
Field 32.42 4.36 26.83 19.18 
Crop 3.52 0.69 5.68 3.12 
Riparian 2.43 0.00 0.00 2.49 
Crop 1.27 0.17 0.26 2.28 
Built 8.84 9.18 5.34 10.69 
Paved 2.01 1.81 0.65 2.70 
Note: All measures were generated using Patch Analyst spatial statistical 
function, which runs analysis in conjunction with ArcGIS® FragStats. 
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Table 2. All generated patch analyst measures for landscape spatial scale 
surrounding subdivisions. 

 S1 S2 S3 S4 
Total Land Area (ha) 202.92 201.24 202.45 205.48 
Patch Number 109.00 84.00 110.00 92.00 
Mean Patch Size (ha) 1.86 2.40 1.84 2.23 
Median Patch Size (ha) 0.37 0.27 0.50 0.37 
Patch Richness 8.00 8.00 6.00 7.00 
Patch Size Coefficient of 
Variation (%)  258.11 470.91 336.46 298.10 
Patch Size Standard 
Deviation (ha) 4.81 11.28 6.19 6.66 
Mean Shape Index 2.10 2.07 1.99 2.17 
Area Weighted Mean 
Shape Index (%) 2.61 3.31 2.98 2.71 
Mean Perimeter-Area 
Ratio  2318.87 1284.71 1109.48 5923.01 
Mean Patch Fractal 
Dimension 1.43 1.46 1.44 1.41 
Area Weighted Mean 
Patch Fractal Dimension 1.38 1.38 1.40 1.38 
Edge Density (m/ha) 447.86 341.79 446.04 402.23 
Total Edge (m) 90880.72 68782.67 90302.74 82651.16 
Mean Patch Edge (m/ha) 833.77 818.84 820.93 898.38 
Shannon's Diversity 
Index 1.41 0.81 1.15 1.21 
Shannon's Evenness 
Index 0.68 0.40 0.64 0.62 

Patch Type Percents     
Forest 54.04 78.27 57.47 61.72 
Shrub 1.65 2.26 7.14 1.73 
Field 11.65 6.00 23.90 15.81 
Crop 8.10 1.46 0.00 0.00 
Riparian 2.67 0.41 0.00 3.35 
Crop 2.00 0.38 0.09 2.51 
Built 17.92 9.75 9.56 12.72 
Paved 1.97 1.47 1.84 2.17 
Note: All measures were generated using Patch Analyst spatial statistical 
function, which runs analysis in conjunction with ArcGIS® FragStats. 
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APPENDIX B 
 

Site Spatial Scale Habitat Patch Maps and Complete Patch Analyst Measures
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Figure 9. ASU Sustainable Farm (farm 1) site spatial scale habitat patch structure. 
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Figure 10.  Maverick Farms (farm 2) site spatial scale habitat patch structure. 
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Figure 11. Creeksong Farm (farm 3) site spatial scale habitat patch structure. 
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Figure 12. Watauga River Farms (farm 4) site spatial scale habitat patch 
structure. 
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Figure 13. Riverside Homes (subdivision 1) site spatial scale habitat patch 
structure. 
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Figure 14. The Glen at Mast Gap (subdivision 2) site spatial scale habitat patch 
structure. 
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Figure 15. Laurel Mountain Homes (subdivision 3)  site spatial scale habitat patch 
structure. 
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Figure 16. Subdivision four (Shull’s Farm) one site spatial scale habitat patch 
structure. 
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Table 3. All generated patch analyst measures for farms sites. 
 F1 F2 F3 F4 

Total Land Area (ha) 5.47 16.63 6.45 15.57 
Patch Number 10 11 10 24 
Mean Patch Size (ha) 0.55 1.51 0.64 0.65 
Median Patch Size (ha) 0.27 0.57 0.48 0.11 
Patch Richness 6 6 5 5 
Patch Size Coefficient of 
Variation (%)  98.59 110.23 90.32 273.69 
Patch Size Standard Deviation 
(ha) 0.54 1.67 0.58 1.78 
Mean Shape Index 1076.82 559.76 942.61 987.87 
Area Weighted Mean Shape 
Index (%) 1.45 1.41 1.42 1.52 
Mean Perimeter-Area Ratio  2.68 2.65 2.40 2.10 
Mean Patch Fractal Dimension 2.35 2.27 2.20 4.79 
Area Weighted Mean Patch 
Fractal Dimension 1820.54 1956.06 1393.53 1855.88 
Edge Density (m/ha) 1.52 1.49 1.47 1.50 
Total Edge (m) 5893.60 9308.90 6077.82 15379.53 
Mean Patch Edge (m/ha) 589.360 846.26 607.78 640.81 
Shannon's Diversity Index 1.285 1.138 1.313 1.10 
Shannon's Evenness Index 0.72 0.64 0.82 0.69 

Patch Type Proportions (%)     
Forest 0.00 50.08 10.76 61.18 
Shrub 0.00 0.00 0.00 1.57 
Field 52.40 33.59 16.94 14.17 
Crop 26.17 11.76 0.00 0.00 
Riparian 3.63 0.00 9.80 0.00 
Crop 10.65 0.36 0.00 0.00 
Built 2.87 3.44 53.86 18.05 
Paved 4.26 0.77 8.64 5.03 
Note: All measures were generated using Patch Analyst spatial statistical function, 
which runs analysis in conjunction with ArcGIS® FragStats. 
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Table 4. All generated patch analyst measures for subdivision sites. 
 S1 S2 S3 S4 

Total Land Area (ha) 9.31 23.74 9.71 23.74 
Patch Number 7 8 11 29 
Mean Patch Size (ha) 1.33 2.97 0.88 0.82 
Median Patch Size (ha) 0.25 1.41 0.17 0.39 
Patch Richness 5 6 4 7 
Patch Size Coefficient of 
Variation (%)  206.99 102.10 170.09 133.56 
Patch Size Standard Deviation 
(ha) 2.75 3.03 1.50 1.09 
Mean Shape Index 418.21 333.71 814.50 768.89 
Area Weighted Mean Shape 
Index (%) 1.35 1.33 1.47 1.43 
Mean Perimeter-Area Ratio  2.25 2.15 2.33 2.10 
Mean Patch Fractal Dimension 1.81 1.69 3.26 2.45 
Area Weighted Mean Patch 
Fractal Dimension 1769.81 826.99 1540.86 1705.63 
Edge Density (m/ha) 1.51 1.41 1.50 1.49 
Total Edge (m) 3895.62 7921.19 7908.91 18254.05 
Mean Patch Edge (m/ha) 556.52 990.15 718.99 629.45 
Shannon's Diversity Index 0.44 1.41 0.96 1.59 
Shannon's Evenness Index 0.28 0.79 0.69 0.82 

Patch Type Proportions (%)     
Forest 89.68 39.96 53.45 27.27 
Shrub 0.00 0.00 4.23 3.46 
Field 1.00 29.48 0.00 31.57 
Crop 6.47 18.37 0.00 0.00 
Riparian 0.00 5.30 0.00 5.81 
Crop 0.00 0.00 0.00 4.60 
Built 1.42 5.77 38.50 24.12 
Paved 1.43 1.12 3.83 3.18 
Note: All measures were generated using Patch Analyst spatial statistical function, 
which runs analysis in conjunction with ArcGIS® FragStats. 
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APPENDIX C 
 

Identified Species Lists



 

102 

Table 5. Total encountered species for all eight sites.   

Species Name Origin Life Growth 
Abies concolor I P T 
Abies fraseri N P T 
Acalypha rhomboidea N A H 
Acer rubrum N P T 
Acer saccharinum N P T 
Achillea ‘Appleblossom’ I P H 
Achillea millefolium N P H 
Actaea podocarpa N P H 
Aegopodium podagraria  I P H 
Aesculus flava  N P T 
Aesculus pavia N P S 
Aesculus sylvatica N P T 
Agalinis sp. 1 I P H 
Ageratina altissima N P H 
Agrostis gigantea I P G 
Agrimonia parviflora  N P G 
Agrostis perennans N P G 
Ajuga reptans I P H 
Alchemilla mollis I P H 
Allium canadense N P H 
Alliaria petiolata I A H 
Allium sativum I P H 
Allium vineale I P H 
Alnus serrulata N P T 
Amaranthus retroflexus N A H 
Ambrosia artemisiifolia N A H 
Ambrosia trifida N A H 
Amphicarpaea bracteata N A V 
Andropogon virginicus  N P G 
Anemone acutiloba  N P H 
Anemone virginiana N P H 
Anthemis cotula I A H 
Antirrhinum majus I A H 
Anthoxanthum odoratum I P G 
Antennaria plantaginifolia N P H 
Apios americana N P V 
Aquilegia canadensis N P H 
Aquilegia vulgaris I P H 
Arabis laevigata N B H 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Arctium minus I B H 
Aristolochia macrophylla N P V 
Arisaema triphyllum N P H 
Arnoglossum atriplicifolium N P H 
Arrhenatherum elatius I P G 
Artemisia vulgaris I P H 
Asclepias incarnata N P H 
Asclepias syriaca  N P H 
Asimina triloba N P T 
Astilbe x crispa I P H 
Asteraceae 1 U U H 
Asteraceae 2 U U H 
Asteraceae 3 U U H 
Asteraceae 4 U U H 
Asteraceae 5 U U H 
Athyrium filix-femina N P H 
Aureolaria virginica N P H 
Barbarea verna I B H 
Barbarea vulgaris I B H 
Berberis canadensis N P S 
Berberis thunbergii I P S 
Betula alleghaniensis N P T 
Betula lenta N P T 
Beta vulgaris I A H 
Bidens bipinnata I A H 
Bignonia capreolata N P V 
Boehmeria cylindrica N P H 
Boechera laevigata N B H 
Brassica juncea I A H 
Brassica napus I A H 
Brassica oleracea  I P H 
Brassica rapa I A H 
Bromus commutatus I A G 
Buddleja davidii  I P S 
Buxus sempervirens I P S 
Calystegia sepium  N P V 
Campanulastrum americanum  N A H 
Campanula divaricata N P G 
Campsis radicans N P V 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Carya alba N P T 
Carex atlantica  N P G 
Carex amphibola  N P G 
Carex appalachica  N P G 
Carya carolinae-septentrionalis N P T 
Carya cordiformis N P T 
Carex sp. 10 U U G 
Carex sp. 11 U U G 
Carex sp. 12 U U G 
Carex sp. 13 U U G 
Carex sp. 14 U U G 
Carex sp. 5 U U G 
Carex sp. 1 U U G 
Carex sp. 2 U U G 
Carex sp. 3 U U G 
Carex sp. 4 U U G 
Carex sp. 6 U U G 
Carex sp. 7 U U G 
Carex sp. 8 U U G 
Carex sp. 9 U U G 
Carya glabra N P T 
Carex gynandra N P G 
Cardamine hirsuta I A H 
Carya laciniosa N P T 
Carex lurida N P G 
Carex muehlenbergii  N P G 
Carya ovata N P T 
Carya pallida N P T 
Carex pensylvanica N P G 
Carpinus sp. 1 U P T 
Cardamine rotundifolia  N P H 
Carex scoparia N P G 
Carya sp. 1 U P T 
Castanea pumila N P T 
Caulophyllum thalictroides N P H 
Celastrus orbiculatus I P V 
Centaurea cyanus I A H 
Centaurea stoebe I B H 
Cerastium sp. 1 U U H 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Cerastium fontanum I B H 
Cerastium semidecandrum I A H 
Chamaesyce maculata N A H 
Chenopodium album N A H 
Chimaphila maculata N P H 
Cichorium intybus I P H 
Cicuta maculata N P H 
Cirsium discolor N B H 
Cirsium vulgare I B H 
Cleome hassleriana I A H 
Clematis terniflora I P V 
Clematis viorna N P V 
Clematis virginiana N P V 
Clinopodium vulgare  N P H 
Collinsonia canadensis N P H 
Commelina communis I A H 
Commelina virginica N P H 
Conyza canadensis N A H 
Convallaria majuscula N P H 
Corylus americana N P S 
Cornus amomum  N P S 
Coreopsis sp. 1 (cultivated) I P H 
Cornus florida N P T 
Coreopsis pubescens N P H 
Coriandrum sativum  I A H 
Cosmos sp. 1 (cultivated) I A H 
Cotoneaster horizontalis I P S 
Crambe cordifolia I P H 
Crataegus iracunda N P T 
Crataegus macrosperma N P T 
Crataegus punctata  N P T 
Crataegus sp. 1 U P T 
Crataegus sp. 2 U U T 
Crepis capillaris  I A H 
Crocosmia ‘Lucifer’ I P H 
Cruciata pedemontana  I A H 
Cryptotaenia canadensis  N P H 
Cyperaceae sp. 1 U U G 
Cyperus sp. 1 (seedling) U U G 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Cyperus strigosus N P G 
Dactylis glomerata I P G 
Danthonia compressa N P G 
Daucus carota I P H 
Dennstaedtia punctilobula N P H 
Deparia acrostichoides N P H 
Desmodium sp. 1 U U H 
Desmodium paniculatum N P H 
Deutzia scabra  I P S 
Dianthus armeria I A H 
Dianthus barbatus I P H 
Dianthus deltoides I P H 
Dichanthelium acuminatum N P G 
Dichanthelium clandestinum N P G 
Dichanthelium dichotomum N P G 
Dichanthelium meridionale N P G 
Digitaria ischaemum  I A G 
Digitaria sanguinalis  N A G 
Diodia virginiana  N A H 
Dioscorea quaternata N P V 
Diospyros virginiana  N P T 
Dorotheanthus sp. 1 (cultivated) I A H 
Dorotheanthus sp. 2 (cultivated) I A H 
Dryopteris intermedia N P H 
Duchesnea indica I P H 
Echinochloa crus-galli I A G 
Echium vulgare I B H 
Eleusine indica I A G 
Eleocharis obtusa N A G 
Elymus hystrix N P G 
Elymus repens I P G 
Elymus villosus N P G 
Epilobium coloratum  N P H 
Equisetum arvense N P H 
Eragrostis capillari N A G 
Erechtites hieraciifolia  N A H 
Erigeron annuus N A H 
Ericaceae 1 U U S 
Erigeron pulchellus N P H 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Erigeron strigosus N B H 
Eruca vesicaria I A H 
Euonymus alatus  I P S 
Euonymus fortunei I P S 
Euphorbia corollata N P H 
Euphorbia marginata N A H 
Eupatorium perfoliatum N P H 
Eupatorium purpureum N P H 
Euphorbia commutata N A H 
Eurybia divaricata N P H 
Eutrochium dubium N P H 
Eutrochium fistulosum N P H 
Fagus grandifolia  N P T 
Fallopia sp. 1 U U V 
Fallopia scandens  N P V 
Festuca rubra N P G 
Festuca subverticillata N P G 
Festuca trachyphylla I P G 
Festuca sp. 1 N P G 
Festuca sp. 2 N P G 
Festuca sp. 3 N P G 
Forsythia viridissima  I P S 
Fraxinus americana  N P T 
Fragaria vesca N P H 
Fragaria virginiana N P H 
Galium aparine N A V 
Galeopsis bifida I A H 
Galium latifolium N P H 
Galium pilosum N P H 
Galinsoga quadriradiata I A H 
Gentiana austromontana N P H 
Gentiana sp 1 U U H 
Geranium columbinum I A H 
Geranium dissectum I A H 
Geranium maculatum N P H 
Geranium molle I A H 
Geranium pusillum I A H 
Geum canadense  N P H 
Geum sp. 1 U U H 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Geum virginianum N P H 
Glebionis coronarium I A H 
Glechoma hederacea  I P H 
Glebionis segetum I A H 
Glyceria striata N P G 
Goodyera pubescens N P H 
Hamamelis virginiana  N P T 
Hedera helix I P V 
Helenium amarum N A H 
Helianthus annuus N A H 
Helenium autumnale N P H 
Helianthus sp. 1 U U H 
Helianthus microcephalus  N P H 
Helictotrichon sempervirens I P G 
Hemerocallis sp. 2 U U H 
Hemerocallis sp. 3 U U H 
Hemerocallis sp. 4 I P H 
Hemerocallis fulva I P H 
Hemerocallis ‘Great Expression’ U P H 
Hemerocallis ‘Orange Show’  I P H 
Hemerocallis ‘Piano Man’ I P H 
Hesperis matronalis I B H 
Heuchera sp. 1 U U H 
Heuchera hispida N P H 
Hibiscus sp. 1 I P S 
Hieracium caespitosum I P H 
Hieracium sp. 1 U U H 
Hieracium sp. 2 U U H 
Holcus lanatus I P H 
Hosta fortunei I P H 
Hosta ‘Ground Master’ I P H 
Hosta ‘Patriot’ I P H 
Hosta ‘Regal Splendor’ I P H 
Hosta sieboldiana ‘Francee’ I P H 
Hosta undulata I P H 
Houstonia montana N P H 
Houstonia purpurea  N P H 
Hydrangea arborescens N P S 
Hydrophyllum canadense  N P H 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Hydrangea paniculata I P S 
Hydrangea quercifolia N P S 
Hydrangea serrata I P S 
Hypericum densiflorum N P S 
Hypericum mutilum N A H 
Hypericum perforatum I P H 
Hypericum punctatum N P H 
Ilex ambigua N P T 
Ilex decidua N P T 
Ilex verticillata  N P S 
Ilex sp. 1 (cultivated) I P S 
Impatiens capensis N P H 
Impatiens pallida N A H 
Impatiens walleriana I A H 
Iris cristata N P H 
Iris pseudacorus I P H 
Iris sp. 1 U U H 
Iris sp. 2 U U H 
Iris sp. 3 U U H 
Iris sp. 4 U U H 
Iris sp. 5 U U H 
Iris sp. 6 U U H 
Iris sp. 7 U U H 
Iris sp. 8 U U H 
Iris sp. 9 (cultivated) I P H 
Iris sp. 10  U U H 
Isotrema tomentosa  N P V 
Itea virginica N P S 
Juglans nigra N P T 
Juncus acuminatus N P G 
Juniperus communis N P H 
Juncus effusus N P G 
Juniperus horizontalis N P S 
Juniperus sp. 1 U U S 
Juncus marginatus N P G 
Juglans nigra N P T 
Juniperus scopulorum I P T 
Juncus tenuis N P G 
Kalmia angustifolia  N P S 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Kalmia carolina N P S 
Kalmia latifolia  N P S 
Krigia sp. 1 U P H 
Krigia virginica N A H 
Kyllinga pumila N P G 
Lactuca canadensis N A H 
Lactuca saligna I A H 
Lactuca sativa I A H 
Lamiaceae 1 U U G 
Lamium purpureum I A H 
Lamprocapnos spectabilis  I P H 
Laportea canadensis N P H 
Leersia oryzoides N P G 
Leonurus cardiaca I P H 
Lepidium campestre  I A H 
Lepidium virginicum N A H 
Lespedeza cuneata I P S 
Lespedeza thunbergii  I P S 
Leucanthemum maximum I A H 
Leucanthemum vulgare I P H 
Lilium bulbiferum I P H 
Lilium sp. 1 (cultivated) I P H 
Lilium sp. 3 (cultivated) I P H 
Lilium sp. 2 (cultivated) I P H 
Lilium michauxii  N P H 
Lilium ‘Olina’ I P H 
Lilium superbum N P H 
Lindera benzoin N P T 
Linaria vulgaris I P H 
Liriodendron tulipifera N P T 
Lobelia cardinalis N P H 
Lobelia inflata N A H 
Lobularia maritima I A H 
Lobelia siphilitica N P H 
Lolium perenne I P G 
Lonicera japonica I P V 
Lunaria annua I B H 
Lupinus polyphyllus N P H 
Luzula acuminata N P G 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Lysimachia ciliata  N P H 
Lysimachia quadrifolia  N P H 
Magnolia acuminata N P T 
Maianthemum racemosum N P H 
Malus coronari N P T 
Malus pumila I P T 
Malva sylvestris I A H 
Melilotus officinalis I A H 
Melissa officinalis I P H 
Mentha spicata I P H 
Microstegium vimineum I A G 
Mimulus ringens  N P H 
Mitchella repens N P H 
Monarda clinopodia N P H 
Monarda didyma N P H 
Monotropa uniflora N P H 
Muhlenbergia sp. 1 U U G 
Muhlenbergia schreberi N P G 
Myosotis scorpioides I P H 
No vegetation U U U 
Nyssa biflora  N P T 
Nyssa sylvatica N P T 
Ocimum basilicum I A H 
Oenothera biennis N B H 
Oenothera fruticosa N P H 
Oenothera sp. 1 U U H 
Orchidaceae 1 U U U 
Osmunda cinnamomea N P H 
Osmunda regalis N P H 
Ostrya virginiana N P T 
Oxalis stricta N P H 
Oxydendrum arboreum N P T 
Oxydendrum sp. 1 U P T 
Oxypolis rigidior  N P H 
Packera anonyma N P H 
Packera aurea N P H 
Packera obovata N P H 
Paeonia lactiflora I P H 
Panicum anceps N P G 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Panicum capillare N A G 
Panax quinquefolius N P H 
Parthenocissus quinquefolia  N P V 
Pastinaca sativa I B H 
Paspalum setaceum N P G 
Persicaria pensylvanica N A H 
Phalaris arundinacea N P G 
Philadelphus inodorus N P S 
Phlox carolina N P H 
Phlox sp. 1 U U H 
Phlox paniculata  N P H 
Phlox pilosa N P H 
Phleum pratense I P G 
Phytolacca americana N P H 
Physocarpus opulifolius N P S 
Physostegia virginiana N P H 
Picea glauca N P T 
Picea rubens N P T 
Pieris japonica I P S 
Pilea pumila N A H 
Pinus strobus  N P T 
Pinus sp. 1 (cultivated) U P T 
Piptochaetium avenaceum N P G 
Pisum sativum I A V 
Platycodon grandiflorum I P H 
Plantago lanceolata I P H 
Plantago major I P H 
Platanus occidentalis N P T 
Plantago rugelii  N P H 
Platanthera sp. 1 U U H 
Poaceae 1 U U G 
Poaceae 2 U U G 
Poaceae 3 U U G 
Poaceae 4 U U G 
Poaceae 5 U U G 
Poaceae 6 I P G 
Poaceae 7 U U G 
Poaceae 8 U U G 
Poaceae 9 U U G 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Poaceae 10 U U G 
Poaceae 11 U U G 
Poaceae 12 U U G 
Poaceae 13 U U G 
Poaceae 14 U U G 
Poaceae 15 U U G 
Poaceae 16 U U G 
Poaceae 17 U U G 
Poa compressa I P G 
Poa pratensis I P H 
Poa sp. 1 U U G 
Poa trivialis I P G 
Podophyllum peltatum N P H 
Polystichum acrostichoides N P H 
Polygonum aviculare I A H 
Polygonum capitatum I P H 
Polygonum cespitosum I A H 
Polygonum convolvulus I A V 
Polygonum cuspidatum I P S 
Polygonum hydropiper I A H 
Polygonum sagittatum N A V 
Polygonum scandens N P V 
Polygonum setaceum N P H 
Polygonum virginianum N A H 
Polygonum sp. 2 U U H 
Populus deltoides N P T 
Portulaca oleracea I A H 
Potentilla norvegica N A H 
Potentilla recta I P H 
Potentilla simplex N P H 
Prenanthes altissima  N P H 
Prunus americana N P T 
Prunus hortulana  N P T 
Prunus sp. 1 U P T 
Prunus serotina N P T 
Prunella vulgaris N P H 
Pulmonaria saccharata I P H 
Pyrus calleryana I P T 
Quercus alba N P T 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Quercus coccinea N P T 
Quercus muehlenbergii N P T 
Quercus rubra N P T 
Quercus stellata N P T 
Quercus velutina  N P T 
Ranunculus allegheniensis N P H 
Ranunculus hispidu N P H 
Ranunculus repens U P H 
Ranunculus sp. 1 U U H 
Raphanus sativu I A H 
Rhododendron calendulaceum N P S 
Rhododendron catawbiense N P S 
Rhododendron sp. 1 U P S 
Rhododendron sp. 2 U U S 
Rhododendron sp. 3 I P H 
Rhododendron maximum N P S 
Rhus glabra N P T 
Robinia sp. 1 U U T 
Robinia pseudoacacia N P T 
Rosa sp. 1 (cultivated) I P S 
Rosa ‘Escapade’ I P S 
Rosa multiflora I P V 
Rosa palustris N P S 
Rubus allegheniensis N P S 
Rubus argutus N P S 
Rubus bifrons I P S 
Rubus flagellaris  N P S 
Rubus idaeus  I P S 
Rubus occidentalis N P S 
Rubus phoenicolasius I P S 
Rubus sp. 2 U P S 
Rubus sp. 3 U P S 
Rubus sp. 4 U P S 
Rubus sp. 5 U P S 
Rubus sp. 6 U P S 
Rubus sp. 7 U P S 
Rudbeckia hirta N A H 
Rudbeckia laciniata N P H 
Rumex acetosella I P H 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Rumex sp. 1 U U H 
Rumex hastatulus N P H 
Rumex obtusifolius  I P H 
Salix babylonica  I P T 
Salvia guaranitica I A H 
Salvia lyrata N P H 
Salix nigra N P T 
Sambucus canadensis  N P S 
Sanguisorba canadensis N P H 
Saponaria officinalis I P H 
Sassafras albidum N P H 
Sceptridium sp. 1 U U S 
Schedonorus arundinaceus I P G 
Schoenoplectus tabernaemontani  N P G 
Scirpus atrovirens N P G 
Scirpus cyperinus N P G 
Scirpus polyphyllus N P H 
Scleranthus annuus I A H 
Secale cereale I A G 
Securigera varia  I P V 
Sedum ‘Autumn Joy’ I P H 
Sedum kamtschaticum I P H 
Sedum ternatum N P H 
Sedum sp. 1 U U H 
Sempervivum tectorum I P H 
Senecio anonymus N P H 
Setaria parviflora N P G 
Silene latifolia I P H 
Silene vulgaris  I P H 
Sisyrinchium angustifolium N P H 
Sisyrinchium mucronatum N P H 
Sisymbrium officinale I A H 
Smallanthus uvedalius N P H 
Smilax rotundifolia N P V 
Solidago altissima N P H 
Solanum carolinense N P H 
Solidago curtisii N P H 
Solidago gigantea N P H 
Solidago sp. 1 U U H 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Solidago sp. 2 U U H 
Solidago sp. 3 U U H 
Solidago sp. 4 U U H 
Solidago juncea N P H 
Solanum lycopersicum I A H 
Solidago nemoralis N P H 
Solidago roanensis N P H 
Solidago rugosa N P H 
Solanum tuberosum I P H 
Sonchus asper I A H 
Sorghum halepense I P G 
Spiraea japonica I P S 
Spinacia oleracea I A H 
Spiraea × vanhouttei  I P S 
Spiranthes vernalis N P H 
Stachys byzantina  I P H 
Stellaria corei  N P H 
Stellaria graminea I P H 
Stellaria sp. 1 U U H 
Stellaria media  I A H 
Stellaria pubera N P H 
Streptopus lanceolatus N P H 
Styrax grandifolius N P S 
Symphyotrichum cordifolium N P H 
Symplocarpus foetidus N P H 
Symphyotrichum lateriflorum N B H 
Symphyotrichum novae-angliae N P H 
Symphytum officinale I P H 
Symphoricarpos orbiculatus N P S 
Symphyotrichum sp. 1 U U H 
Symphyotrichum pilosum  N P H 
Symphyotrichum prenanthoides N P H 
Symphyotrichum puniceum N P H 
Syringa vulgaris I P S 
Taraxacum officinale I P H 
Thaspium barbinode N P H 
Thuja occidentalis N P T 
Thymus vulgaris I P S 
Tiarella cordifolia N P H 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Tilia americana N P T 
Toxicodendron pubescens N P S 
Toxicodendron radicans N P V 
Tradescantia subaspera N P H 
Trifolium aureum I A H 
Trifolium campestre  I A H 
Tridens flavus  N P G 
Trifolium incarnatum I A H 
Trifolium pratense I P H 
Trifolium repens I P H 
Trillium simile N P H 
Tsuga canadensis  N P T 
Tsuga caroliniana N P T 
Typha latifolia N P H 
Unknown 10 (cultivar) I U S 
Unknown 11 (dicot) U U H 
Unknown 12 (dicot) U U H 
Unknown 13 (dicot) U U H 
Unknown 14 (cultivar) I U H 
Unknown 15 (dicot) U U H 
Unknown 16 (dicot) U U H 
Unknown 17 (dicot) U U H 
Unknown 18 (dicot) U U H 
Unknown 19 (dicot) U U H 
Unknown 20 (dicot) U U H 
Uknown 21 (monocot) U U G 
Uknown 22 (monocot) U U G 
Uknown 23 (dicot) U U H 
Unknown 24 (dicot) U U H 
Unknown 25 (dicot) U U H 
Unknown 26 (dicot) U U H 
Unknown 27 (dicot) U U H 
Unknow 28 (monocot) U U U 
Unknown 29 (seedling) U U H 
Unknown 30 (seedling) U U H 
Unknown 31 (seedling) U U H 
Unknown 32 (seedling) U U H 
Unknown 33 (monocot) U U H 
Unknown 34 (monocot) U U G 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 



 

118 

Table 5. Extended.   

Species Name Origin Life Growth 
Unknown 35 (dicot) U U H 
Unknown 36 (monocot) U U G 
Unknown 37 (dicot) U U H 
Unknown 38 (dicot) U U S 
Unknown 39 (cultivated monocot) I U S 
Unknown 40 (monocot) U U G 
Unknown 42 (dicot) U U H 
Unknown 44 (dicot) U U H 
Unknown 45 (monocot) U U G 
Unknown 47 (monocot) U U G 
Unknown 48 (dicot) U U H 
Unknown 49 (monocot) U U G 
Unknown 50 (conifer) I P S 
Unknown 52 (cultivar) I A H 
Unknow 53  U U H 
Unknown 54 (seedling) I A H 
Unknown 55 (cultivar) I A H 
Unknown 56 (seedling) I A H 
Unknown 1 U U H 
Unknown 2 (dicot) U U H 
Unknown 4 (dicot) U U H 
Unknown 6 (dicot) U U H 
Unknown 7 (dicot) U U H 
Unknown 8 (dicot) U U H 
Unknown 9 U U S 
Vaccinium corymbosum  N P S 
Verbesina alternifolia N P H 
Vernonia gigantea N P H 
Verbena hastata  N B H 
Vernonia noveboracensis  N P H 
Veronica officinalis I P H 
Veronica persica I A H 
Verbascum thapsus I B H 
Verbena urticifolia  N P H 
Veratrum viride N P H 
Viburnum nudum N P H 
Viburnum rhytidophyllum I P S 
Vicia sp. 1 U U H 
Vicia villosa I A V 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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Table 5. Extended.   

Species Name Origin Life Growth 
Vinca major I P V 
Vinca minor  I P H 
Viola sp. 1 N P H 
Viola sp. 2 N P H 
Viola primulifolia N P H 
Viola rotundifolia N P H 
Viola sagittata N P H 
Viola sororia N P H 
Viola striata N P H 
Viola tricolor I A H 
Viola wittrockiana I A H 
Vitis aestivalis N P V 
Vitis sp. 1 I P V 
Vitis labrusca N P V 
Weigela floribunda I P S 
Xanthorhiza simplicissima N P H 
Zea mays I A G 
Zinnia violacea I A H 

Note: N (native); I (exotic/introduced); A (annual); P (perennial); B (biennial); H 
(herbaceous); T (tree); S (shrub); G (grass); V (vine); (n=4 farms, n=4 subdivisions) 
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